摘要:
A method and system for high-order co-clustering of objects of heterogeneous types is provided. A clustering system co-clusters objects of heterogeneous types based on joint distributions for objects of non-central types and objects of a central type. The clustering system uses an iterative approach to co-clustering the objects of the various types. The clustering system divides the co-clustering into a sub-problem, for each non-central type (e.g., first type and second type), of co-clustering objects of that non-central type and objects of the central type based on the joint distribution for that non-central type. After the co-clustering is completed, the clustering system clusters objects of the central type based on the clusters of the objects of the non-central types identified during co-clustering. The clustering system repeats the iterations until the clusters of objects of the central type converge on a solution.
摘要:
A method and system for high-order co-clustering of objects of heterogeneous types is provided. A clustering system co-clusters objects of heterogeneous types based on joint distributions for objects of non-central types and objects of a central type. The clustering system uses an iterative approach to co-clustering the objects of the various types. The clustering system divides the co-clustering into a sub-problem, for each non-central type (e.g., first type and second type), of co-clustering objects of that non-central type and objects of the central type based on the joint distribution for that non-central type. After the co-clustering is completed, the clustering system clusters objects of the central type based on the clusters of the objects of the non-central types identified during co-clustering. The clustering system repeats the iterations until the clusters of objects of the central type converge on a solution.
摘要:
A clustering system generates an original Laplacian matrix representing objects and their relationships. The clustering system initially applies an eigenvalue decomposition solver to the original Laplacian matrix for a number of iterations. The clustering system then identifies the elements of the resultant eigenvector that are stable. The clustering system then aggregates the elements of the original Laplacian matrix corresponding to the identified stable elements and forms a new Laplacian matrix that is a compressed form of the original Laplacian matrix. The clustering system repeats the applying of the eigenvalue decomposition solver and the generating of new compressed Laplacian matrices until the new Laplacian matrix is small enough so that a final solution can be generated in a reasonable amount of time.
摘要:
A method and system for high-order co-clustering of objects of heterogeneous types using multiple bipartite graphs is provided. A clustering system represents relationships between objects of a first type and objects of a third type as a first bipartite graph and relationships between objects of a second type and objects of the third type as a second bipartite graph. The clustering system defines an objective function that specifies an objective of the clustering process that combines an objective for the first bipartite graph and an objective for the second bipartite graph. The clustering system solves the objective function and then applies a clustering algorithm such as the K-means algorithm to the solution to identify the clusters of heterogeneous objects.
摘要:
A method and system for high-order co-clustering of objects of heterogeneous types using multiple bipartite graphs is provided. A clustering system represents relationships between objects of a first type and objects of a third type as a first bipartite graph and relationships between objects of a second type and objects of the third type as a second bipartite graph. The clustering system defines an objective function that specifies an objective of the clustering process that combines an objective for the first bipartite graph and an objective for the second bipartite graph. The clustering system solves the objective function and then applies a clustering algorithm such as the K-means algorithm to the solution to identify the clusters of heterogeneous objects.
摘要:
Some implementations provide techniques for estimating impression numbers. For example, a log of advertisement bidding data may be used to generate and train an impression estimation model. In some implementations, an impression estimation component may use a boost regression technique to determine a predicted impression value range based on a proposed bid received from an advertiser. For example, the predicted impression value range may be determined based on a predicted estimation error. Additionally, in some instances, the predicted impression value range may be evaluated using one or more evaluation metrics.
摘要:
Some implementations generate a mapping function using one or more historic performance indicators for a set of ad-keyword pairs and one or more advertisement metrics extracted from the set of ad-keyword pairs. The mapping function may be applied to map one or more advertisement metrics of a particular ad-keyword pair to determine a quality score for the particular ad-keyword pair. For example, the quality score may be used when determining whether to select an advertisement for display or may be provided as feedback to an advertiser. Additionally, in some implementations, the mapping function may be applied to determine a quality score for a new ad-keyword pair that has not yet accumulated historic information.
摘要:
A clustering system generates an original Laplacian matrix representing objects and their relationships. The clustering system initially applies an eigenvalue decomposition solver to the original Laplacian matrix for a number of iterations. The clustering system then identifies the elements of the resultant eigenvector that are stable. The clustering system then aggregates the elements of the original Laplacian matrix corresponding to the identified stable elements and forms a new Laplacian matrix that is a compressed form of the original Laplacian matrix. The clustering system repeats the applying of the eigenvalue decomposition solver and the generating of new compressed Laplacian matrices until the new Laplacian matrix is small enough so that a final solution can be generated in a reasonable amount of time.
摘要:
A method and system for determining whether a web site is a spam web site based on analysis of changes in link information over time is provided. A spam detection system collects link information for a web site at various times. The spam detection system extracts one or more features from the link information that relate to changes in the link information over time. The spam detection system then generates an indication of whether the web site is a spam web site using a classifier that has been trained to detect whether the extracted feature indicates that the web site is likely to be spam.
摘要:
A community mining system analyzes objects of different types and relationships between the objects of different types to identify communities. The relationships between the objects have an associated time. The community mining system extracts various features related to objects of a designated type from the relationships between objects of different types that represent the evolution of the features over time. The community mining system collects training data that indicates extracted features associated with members of the communities. The community mining system then classifies an object of the designated type as being within the community based on closeness of the features of the object to the features of the training data.