摘要:
Techniques for performing erasure detection and power control for a transmission without error detection coding are described. For erasure detection, a transmitter transmits codewords via a wireless channel. A receiver computes a metric for each received codeword, compares the computed metric against an erasure threshold, and declares the received codeword to be “erased” or “non-erased”. The receiver dynamically adjusts the erasure threshold based on received known codewords to achieve a target level of performance. For power control, an inner loop adjusts the transmit power to maintain a received signal quality (SNR) at a target SNR. An outer loop adjusts the target SNR based on the status of received codewords (erased or non-erased) to achieve a target erasure rate. A third loop adjusts the erasure threshold based on the status of received known codewords (“good”, “bad”, or erased) to achieve a target conditional error rate.
摘要:
Systems and methodologies are described that facilitate providing auxiliary multiple-input, multiple-output (MIMO) pilot signals to MIMO user devices in a wireless communication environment. According to some aspects, a portion of data transmission power may be reallocated for auxiliary MIMO pilot transmission during a data segment in a time slot, in order to permit a MIMO user device to perform CQI and rank prediction. Additionally or alternatively, non-MIMO pilot transmission power may be reallocated in a pilot segment in the time slot for transmission of an auxiliary MIMO pilot signal to permit the MIMO user device to demodulate data transmitted in data segments of the time slot. MIMO pilot signals may additionally be time-division multiplexed within or across time slots and may be transmitted over available Walsh codes in data and control segments.
摘要:
Techniques are provided to support multi-carrier code division multiple access (MC-CDMA) in an orthogonal uplink of a wireless communication system. A method of wireless multi-carrier communications comprises dividing sub-carriers on an uplink into non-overlapping groups, allocating a time-frequency block including a hopping duration and a non-overlapped group, respectively, assigning a different set of orthogonal codes to each user, spreading data (or pilot) symbols of each user over the allocated time-frequency block, wherein the data (or pilot) symbols of each user are spread using the different set of orthogonal codes assigned to each user, mapping each data (or pilot) symbol to a modulation symbol in the time-frequency block, generating an orthogonal waveform based on the mapped symbols, and transmitting the orthogonal waveform.
摘要:
Pilots are transmitted on demand on a reverse link and used for channel estimation and data transmission on a forward link. A base station selects at least one terminal for on-demand pilot transmission on the reverse link. Each selected terminal is a candidate for receiving data transmission on the forward link. The base station assigns each selected terminal with a time-frequency allocation, which may be for a wideband pilot, a narrowband pilot, or some other type of pilot. The base station receives and processes on-demand pilot transmission from each selected terminal and derives a channel estimate for the terminal based on the received pilot transmission. The base station may schedule terminals for data transmission on the forward link based on the channel estimates for all selected terminals. The base station may also process data (e.g., perform beamforming or eigensteering) for transmission to each scheduled terminal based on its channel estimate.
摘要:
Techniques for efficient W-CDMA modulation are disclosed. In one aspect, a multiplexing/coding chain for use in modulation such as that defined by the W-CDMA specification is disclosed. In another aspect, transport blocks are processed and concatenated, utilizing memory efficiently. This aspect has the further benefit of preparing transport channels for efficient subsequent processing. It also allows for ease of interface with the transport channel source. In another aspect, the use of repeated channel coding is used in lieu of an interleaver memory to provide channel coding and interleaving. These aspects, collectively, yield the advanced benefits of a system, such as W-CDMA, in a hardware efficient manner. The techniques described herein apply equally to both access points and access terminals. The techniques are not limited to W-CDMA systems; they are quite suitable to other systems requiring the various benefits the invention offers. Various other aspects of the invention are also presented.
摘要:
Techniques are provided to support multi-carrier code division multiple access (MC-CDMA) in an orthogonal uplink of a wireless communication system. A method of wireless multi-carrier communications comprises dividing sub-carriers on an uplink into non-overlapping groups, allocating a time-frequency block including a hopping duration and a non-overlapped group, respectively, assigning a different set of orthogonal codes to each user, spreading data (or pilot) symbols of each user over the allocated time-frequency block, wherein the data (or pilot) symbols of each user are spread using the different set of orthogonal codes assigned to each user, mapping each data (or pilot) symbol to a modulation symbol in the time-frequency block, generating an orthogonal waveform based on the mapped symbols, and transmitting the orthogonal waveform.
摘要:
A method for receiving an indication to apply a first modulation scheme to modulate one or more segments of a first portion includes determining a first segment set, having at least one segment of the first portion for applying the first modulation scheme. The method further includes modulating the first segment set of the first portion using the first modulation scheme. In addition, the method includes modulating one or more segments of the second portion using a second scheme, different from first modulation scheme.
摘要:
Systems and methodologies are described that facilitate providing auxiliary multiple-input, multiple-output (MIMO) pilot signals to MIMO user devices in a wireless communication environment. According to some aspects, a portion of data transmission power may be reallocated for auxiliary MIMO pilot transmission during a data segment in a time slot, in order to permit a MIMO user device to perform CQI and rank prediction. Additionally or alternatively, non-MIMO pilot transmission power may be reallocated in a pilot segment in the time slot for transmission of an auxiliary MIMO pilot signal to permit the MIMO user device to demodulate data transmitted in data segments of the time slot. MIMO pilot signals may additionally be time-division multiplexed within or across time slots and may be transmitted over available Walsh codes in data and control segments.
摘要:
For quasi-orthogonal multiplexing in an OFDMA system, multiple (M) sets of traffic channels are defined for each base station. The traffic channels in each set are orthogonal to one another and may be pseudo-random with respect to the traffic channels in each of the other sets. The minimum number of sets of traffic channels (L) is used to support a given number of (U) terminals selected for data transmission, where M≧L≧1 and U≧1. Each terminal transmits data and pilot symbols on its traffic channel. A base station receives data transmissions from all terminals and may perform receiver spatial processing on received symbols with spatial filter matrices to obtain detected data symbols. The spatial filter matrix for each subband may be derived based on channel response estimates for all terminals transmitting on that subband.
摘要:
For quasi-orthogonal multiplexing in an OFDMA system, multiple (M) sets of traffic channels are defined for each base station. The traffic channels in each set are orthogonal to one another and may be pseudo-random with respect to the traffic channels in each of the other sets. The minimum number of sets of traffic channels (L) is used to support a given number of (U) terminals selected for data transmission, where M≧L≧1 and U≧1. Each terminal transmits data and pilot symbols on its traffic channel. A base station receives data transmissions from all terminals and may perform receiver spatial processing on received symbols with spatial filter matrices to obtain detected data symbols. The spatial filter matrix for each subband may be derived based on channel response estimates for all terminals transmitting on that subband.