Abstract:
A therapeutic medical article is provided which comprises a medical article, a precursor compound and an activator compound. The medical article is adapted, upon administration to a patient, to release the precursor compound and the activator compound such that the activator compound interacts with the precursor compound and converts the precursor compound into activated form for local delivery. Specific examples of precursor and activator compound pairs include: (a) a nitrosothiol precursor and a nitric oxide donor, (b) plasminogen and plasminogen activator, and (c) fibrinogen and thrombin.
Abstract:
A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.
Abstract:
A method for producing a S-nitrosylated species is provided. The method comprises: (a) providing a deoxygenated, alkaline aqueous solution comprising a thiol and a nitrite-bearing species; (b) acidifying the solution by adding acid to the solution while concurrently mixing the solution (e.g., by vigorously stirring the solution) to produce the S-nitrosylated species; and (c) isolating the S-nitrosylated species. The nitrite-bearing species can be, for example, an inorganic nitrite, such as an alkali metal nitrite, or an organic nitrite, such as an alkyl nitrite (e.g., ethyl nitrite, amyl nitrite, isobutyl nitrite or t-butyl nitrite). The thiol is preferably a thiol-containing polysaccharide, a thiol-containing lipoprotein, a thiol-containing amino acid or a thiol-containing protein, and more preferably a thiol-containing polysaccharide such as thiolated cyclodextrin. In many preferred embodiments, the S-nitrosylated species is insoluble in the acidified solution, precipitating upon formation. The S-nitrosylated species can be isolated, for example, by a process in which the precipitate is removed from the solution (e.g., by centrifugation) and the aqueous solvent remaining in the precipitate is sublimated (e.g., by freezing the precipitate and subjecting it to a vacuum). The isolated S-nitrosylated product is preferably protected from heat, light, moisture and oxygen.
Abstract:
A delay-optimizing technology-mapping process for an electronic design automation system selects the best combination of library devices to use in a forward and a backward sweep of circuit trees representing a design. A technology selection process in an electronic design automation-system comprises the steps of partitioning an original circuit design into a set of corresponding logic trees. Then, ordering the set of corresponding logic trees into an ordered linear list such that each tree-T that drives another ordered tree precedes the other ordered tree, and such that each ordered tree that drives the tree-T precedes the tree-T. Next, sweeping forward in the ordered linear list while computing a set of Pareto-optimal load/arrival curves for each of a plurality of net nodes that match a technology-library element. And, sweeping backward in the ordered linear list while using the set of Pareto-optimal load/arrival curves for each of the net nodes and a capacitive load to select a best one of the technology-library elements with a shortest signal arrival time. Wherein, only those net nodes that correspond to gate inputs are considered, and any capacitive loads are predetermined.
Abstract:
Provided are precursors and methods of using same to deposit film consisting essentially of nickel. Certain methods comprise providing a substrate surface; exposing the substrate surface to a vapor comprising a precursor having a structure represented, without limitation to specific orientation, by: wherein R1 and R2 are each independently H or any C1-C3 alkyl group, R4 is trimethylsilyl or C1-C3 alkyl, and L is any ligand that does not contain oxygen; and exposing the substrate to a reducing gas to provide a film consisting essentially of nickel on the substrate surface.
Abstract:
Provided are precursors and methods of using same to deposit film consisting essentially of nickel. Certain methods comprise providing a substrate surface; exposing the substrate surface to a vapor comprising a precursor having a structure represented by formula (I): wherein R1 is t-butyl and each R2 is each independently any C1-C3 alkyl group; and exposing the substrate to a reducing gas to provide a film consisting essentially of nickel on the substrate surface.
Abstract:
A therapeutic medical article is provided which comprises a medical article, a precursor compound and an activator compound. The medical article is adapted, upon administration to a patient, to release the precursor compound and the activator compound such that the activator compound interacts with the precursor compound and converts the precursor compound into activated form for local delivery. Specific examples of precursor and activator compound pairs include: (a) a nitrosothiol precursor and a nitric oxide donor, (b) plasminogen and plasminogen activator, and (c) fibrinogen and thrombin.
Abstract:
A communication system for transmitting and receiving a sequence of bits, and the methodology for transferring that sequence of bits are provided. The communication system includes a transmitting circuit and a receiving circuit. Within the transmitting circuit is a scrambler that comprises a shift register, an enable circuit, and an output circuit. The shift register temporarily stores n bits within the sequence of bits, and the enable circuit enables the shift register to store bits that arise only within the payload section of a frame. The output circuit includes a feedback, and several taps within the n stages to scramble logic values within the sequence of n bits output from the shift registers thus effectively preventing in most instances the sequence of bits from exceeding n number of the same logic value. Within the receiving circuit is a descrambler also having a shift register, an enable circuit, and an output circuit. The descrambler recompiles the scrambled data back to its original form. The scrambler is preferably placed before an encoder in the transmission path to minimize data dependent, low frequency jitter. The encoder is used to place a coding violation into the frame to signal the beginning of each frame, and to encode the parity with an offset against any DC accumulation of the coding violation and the scrambled payload to eliminate all DC accumulation (baseline wander) within each frame.
Abstract:
A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (
Abstract:
A method for generating timing constraint systems, where the constrained object is a digital circuit., is provided, where the constraints are generated for the use of a digital logic optimization (synthesis) tool. The synthesis tool is used to optimize the circuit, under the applied constraints, so that the circuit exhibits certain desirable timing properties, while at the same time minimizing hardware cost and various other properties. The particular class of timing constraints generated by the disclosed invention is useful when the circuit is to be retimed after optimization. Typically, the joint use of the described invention and retiming results in improvements in the overall cost/performance tradeoff curve of the design. The invention comprises a method that comprises the following steps: (1) the flip-flops of the design are replaced with buffers having a negative delay whose magnitude is approximately the desired clock cycle time of the design; and (2) cycles in the design are broken using flip-flops having an infinite or quasi-infinite clock frequency. Following optimization by the synthesis tool, the temporary changes can be reverted, and retiming performed on the circuit.