摘要:
A channel norm-based ordering and whitened decoding technique (lower complexity iterative decoder) for MIMO communication systems performs approximately the same level of performance as an iterative minimum mean squared error decoder. Decoding a signal vector comprises receiving a signal vector yk, multiplying the received signal vector yk by a conjugate transpose of a channel matrix H*. A column vector zk is generated. The entries of the column vector zk are reordered and an estimated channel matrix {tilde over (H)} is generated. The estimated channel matrix {tilde over (H)} decomposed using a Cholesky decomposition and generating a triangular matrix L. Triangular matrix L is solved backwards and a signal vector {tilde over (s)}k estimated. An estimate of the transmitted symbol vector Ŝk is generated.
摘要翻译:用于MIMO通信系统的基于信道规范的排序和白化解码技术(较低复杂度迭代解码器)执行与迭代最小均方误差解码器大致相同的性能水平。 对信号矢量进行解码包括:将接收信号矢量y N k乘以通道矩阵H *的共轭转置的信号矢量y k k。 生成列向量z SUB>。 列向量z 的条目被重新排序,并且生成估计的信道矩阵H. 估计的信道矩阵H使用Cholesky分解分解并产生三角矩阵L.三角矩阵L向后求解并且估计信号矢量s N k。 生成发送的符号矢量S N k的估计。
摘要:
A reduced search space minimum distance decoding algorithm provides average probability of error performance close to that of optimal MAP decoding. The decoding algorithm provides dramatic complexity reductions compared with MAP decoding. A sub-optimal decoder receives signal vectors y1 . . . yk. Soft output bits are generated as is a reduced search space V via a reduced search space table creation unit in response to the soft output bits and an estimated channel H. A signal vector b is generated via a maximum likelihood decoding unit in response to the reduced search space V and the signal vectors y1 . . . yk.
摘要:
A wireless transceiver 10 is provided that includes a configurable analog component 14 and a controller portion 18. The configurable analog component 14 is operable to receive an input radio frequency signal and to transmit the output radio frequency signal. The controller portion 18 is operable to promote adjustment of a bandwidth of the configurable analog component 14 from at least a first bandwidth to a second bandwidth.
摘要:
For use with a multiple-input, multiple-output (MIMO) transmitter, an orthogonal preamble encoder, a method of encoding orthogonal preambles and a communication system incorporating the encoder or the method. In one embodiment, the encoder includes: (1) a preamble supplement generator configured to provide a first long sequence preamble supplement to a first transmit antenna of the MIMO transmitter and (2) a preamble supplement coordinator coupled to the preamble supplement generator and configured to provide a second long sequence preamble supplement to a second transmit antenna of the MIMO transmitter, at least a portion of the second long sequence preamble supplement being a negation of the first long sequence preamble supplement.
摘要:
A method for network coding includes encoding a plurality of message packets to produce a plurality of encoded packets. Each message packet and each encoded packet includes a plurality of symbols having an index and each symbol of the encoded packets is generated by applying a Reed-Solomon code to the symbols of the message packets having the same index as the symbol of the encoded packets. A length of the encoded packets is the same as a length of the message packets.
摘要:
An integrated circuit includes logic configured to encode one or more first data symbols in one or more first sub-carriers as one or more second data symbols in one or more second sub-carriers of a smart-utility-network communication.
摘要:
In at least some embodiments, a wireless communication system includes a transmitter that transmits a signal over a communication channel. The system also includes a receiver that receives the signal as an output of the communication channel. The receiver establishes a boundary for a transformed lattice and eliminates candidates outside the established boundary.
摘要:
A method and apparatus for detecting symbols in a Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (“MIMO-OFDM”) system. A MIMO-OFDM receiver includes a first detector that estimates a symbol of a first MIMO-OFDM sub-carrier and a second detector that estimates a symbol of a second MIMO-OFDM sub-carrier. The second detector differs in complexity from the first detector. A detector control block is coupled to the detectors. The detector control block assigns the first detector to process the first MIMO-OFDM sub-carrier and assigns the second detector to process the second MIMO-OFDM sub-carrier. The detector control block computes a list metric for a sub-carrier. Based on the list metric the detector control block assigns a candidate symbol list length to the detector processing the sub-carrier. Alternately, the detector control block assigns one of a variety of detector types to a sub-carrier based on the sub-carrier list metric.
摘要:
Embodiments of the invention provide a versatile system for selectively spreading carrier data across multiple carrier paths within an Orthogonal Frequency Division Multiplexing (OFDM) system, particularly an ultra-wideband (UWB) system. The present invention provides a data input, which passes data to a randomizer. The data then passes to a convolutional code function (206), the output of which is punctured by puncturing function. An interleaver function receives the punctured code data, and cooperatively operates with a mapper element to prepare the coded data for pre-transmission conversion by an IFFT. The mapper element comprises a dual carrier modulation function, which associates and transforms two punctured code data elements into a format for transmission on two separate signal tones.
摘要:
In a wireless MIMO system with interference cancellation, compensate for decision errors in the cancelled symbols by adjustments to the scaling of the soft estimates with additive interference-proportional to estimates of the decision error probability.