Abstract:
The disclosure relates to digital watermarking, steganography, and specifically to message coding protocols used in conjunction with digital watermarking and steganographic encoding/decoding and payload interpretation methods. One claim recites a method for interpreting a data structure having fixed and variable message portions, the method comprising: processing the fixed message portion to determine a version of the variable message portion; decoding the entire payload field of the variable message portion according to the determined version; and interpreting only a portion of the decoded payload field according to the determined version. Of course, other features and claims are provided too.
Abstract:
Signal processing devices and methods estimate a geometric transform of an image signal. From a seed set of transform candidates, a direct least squares method applies a seed transform candidate to a reference signal and then measures correlation between the transformed reference signal and an image signal in which the reference signal is encoded. Geometric transform candidates encompass differential scale and shear, which are useful in approximating a perspective transform. For each candidate, update coordinates of reference signal features are identified in the image signal and provided as input to a least squares method to compute an update to the transform candidate. The method iterates so long as the update of the transform provides a better correlation. At the end of the process, the method identifies a geometric transform or set of top transforms based on a further analysis of correlation, as well as other results. Phase characteristics are exploited in the process of updating coordinates and measuring correlation. The geometric transform is used as an approximation of the geometric distortion of an image after digital data is encoded in it, and is used to compensate for this distortion to facilitate extracting embedded digital messages from the image. Due to the errors in the approximation, a signal confidence metric is determined and used to weight message symbol estimates extracted from the image.
Abstract:
The present invention relate generally to digital watermarking and data hiding. One claim recites an apparatus comprising: electronic memory for storing first color data and second color data, the first color data and the second color data represent data from a color image signal or color video signal, and a digital watermark signal, the digital watermark signal serving to facilitate detection of a watermark message; means for separating the digital watermark signal into first frequency components and second frequency components; means for modifying the first color data by hiding the first frequency components therein; and means for modifying the second color data by hiding the second frequency components therein. Of course, other combinations and claims are provided too.
Abstract:
The present disclosure relates to advanced image processing and encoded signal processing. One claim currently recites an image processing method comprising the acts: receiving a digital representation of artwork, the artwork having an area of uniform color; generating a two-dimensional data signal that redundantly encodes a plural-bit message, the data signal comprising plural elements, each of which has a single bit value; receiving a two-dimensional synchronization signal comprising plural elements, each of which has a plural-bit value, each element of said data signal having an element of the synchronization signal corresponding thereto; processing the two-dimensional data signal with the two-dimensional synchronization signal and with a gradient function to yield a two-dimensional gradient marking signal; and printing an ink counterpart of the gradient marking signal on a medium with the artwork, said printing comprising printing plural dithered two-dimensional blocks of at least four contiguous elements each, in which one or more elements of each block are printed to be dark. Of course, other claims and combinations are described as well.
Abstract:
Signal processing devices and methods estimate transforms between signals using a least squares technique. From a seed set of transform candidates, a direct least squares method applies a seed transform candidate to a reference signal and then measures correlation between the transformed reference signal and a suspect signal. For each candidate, update coordinates of reference signal features are identified in the suspect signal and provided as input to a least squares method to compute an update to the transform candidate. The method iterates so long as the update of the transform provides a better correlation. At the end of the process, the method identifies a transform or set of top transforms based on a further analysis of correlation, as well as other results.
Abstract:
This disclosure describes a distributed reader architecture for a mobile computing device such as cellular telephone handset. One claim recites a method for identifying a content item from a host signal captured on a mobile telephone handset, comprising: from the handset, receiving filtered data from the host signal for use in identifying the content item; processing the filtered data to compute a content fingerprints; using the content fingerprints to determine an action associated with the content item, in which said determining utilizes information pertaining to an operating system associated with the mobile telephone handset; and communicating information associated with the action to the mobile telephone handset. Of course, other claims and combinations are provided as well.
Abstract:
The disclosure relates to digital watermarking, steganography, and specifically to message coding protocols used in conjunction with digital watermarking and steganographic encoding/decoding and payload interpretation methods. One claim recites a method for interpreting a data structure having fixed and variable message portions, the method comprising: processing the fixed message portion to determine a version of the variable message portion; decoding the entire payload field of the variable message portion according to the determined version; and interpreting only a portion of the decoded payload field according to the determined version. Of course, other features and claims are provided too.
Abstract:
Content signal recognition is based on a multi-axis filtering of the content signal. The signatures are calculated, formed into data structures and organized in a database for quick searching and matching operations used in content recognition. For content recognition, signals are sampled and transformed into signatures using the multi axis filter. The database is searched to recognize the signals as part of a content item in the database. Using the content identification, content metadata is retrieved and provided for a variety of applications. In one application, the metadata is provided in response to a content identification request.
Abstract:
Audio signal processing enhances audio watermark embedding and detecting processes. Audio signal processes include audio classification and adapting watermark embedding and detecting based on classification. Advances in audio watermark design include adaptive watermark signal structure data protocols, perceptual models, and insertion methods. Perceptual and robustness evaluation is integrated into audio watermark embedding to optimize audio quality relative the original signal, and to optimize robustness or data capacity. These methods are applied to audio segments in audio embedder and detector configurations to support real time operation. Feature extraction and matching are also used to adapt audio watermark embedding and detecting.
Abstract:
The present invention relate generally to digital watermarking and data hiding. One claim recites a method including: obtaining first data and second color data, the first color data and the second color data represent data from a color image signal or color video signal; obtaining a digital watermark pattern, the pattern aiding detection of a watermark message; separating the digital watermark pattern into first frequency components and second frequency components; utilizing a programmed electronic processor or electronic processing circuitry, modifying the first color data by hiding the first frequency components therein; and utilizing a programmed electronic processor or electronic processing circuitry, modifying the second color data by hiding the second frequency components therein. Of course, other combinations and claims are provided too.