Abstract:
An antenna device (10) includes: an antenna (100) including a radiating element (101) and an internal ground (103); a coaxial cable (200) whose internal conductor (204) is connected with the radiating element (101) and whose external conductor (203) is connected with the internal ground (103); and an external ground (500) capacitive-coupled with the external conductor (203) of the coaxial cable (200).
Abstract:
There is provided a planar optical waveguide element including a core, the core including first and second portions and a gap portion that is positioned in a center of a width direction of the core between the first and second portions so as to extend in a light waveguide direction. The gap portion has a lower refractive index than that of the first and second portions, and a single mode propagated in the waveguide element has a span crossing the first and second portions.
Abstract:
To improve a gain of an antenna. An antenna 1 includes a dielectric layer 6, a conductive ground layer 7 bonded to the layer 6 and including active slots 7c-7f aligned at regular intervals, aligned active elements 9c-9f formed facing the active slots 7c-7f, respectively, first passive elements 9b, 9a aligned with and extending from one end of a row of the active elements 9c-9f, second passive elements 9g, 9h aligned with and extending from the other end of the row, a feed line 4a formed on a side opposite to the layer 7 with respect to the layer 6, to be electromagnetically coupled to the active elements 9c-9f via the active slots 7c-7f. The second passive elements 9g, 9h are arranged in line symmetry with the first passive elements 9b, 9a with respect to a line 9z passing through the center of the row and perpendicular to the row.
Abstract:
An antenna includes a dielectric layer, a conductive ground layer formed on a first main surface of the dielectric layer, and radiation elements formed on a second main surface of the dielectric layer and are conductive. The first radiation element includes a first non-uniform width part that has a width in a direction parallel to a first side in a linear shape opposed to a first vertex, and the width of the first non-uniform width part gradually decreases in a direction from the first side to the first vertex. The second radiation element includes a second non-uniform width part that has a width in a direction parallel to a second side in a linear shape opposed to a second vertex, and the width of the second non-uniform width part gradually decreases in a direction from the second side to the second vertex.
Abstract:
An antenna device includes line-shaped feeding conductors arranged so as to face each patch antenna array and performing electromagnetic coupling feeding on each of the patch antennas, from a wiring-side feeding portions formed at a position intersecting a slot when viewed from the normal direction of a first surface. The patch antennas include an electrode which is arranged so as to face the wiring-side feeding portion, between two radiation elements arranged apart in the first direction, and is electromagnetically coupled from the wiring-side feeding portion. The electrode and each of the two radiation elements are electrically coupled in the first direction.
Abstract:
Provided is a phased array antenna in which a delay time of a radio frequency signal supplied to each antenna element is not dependent on frequency. Each feeding circuit (Fi) of the phased array antenna (1) includes: a time delay element (TDi) configured to impart a time delay Δti to a sum signal VIF+LO(t) which is obtained by adding an intermediate frequency signal VIF(t) and a local signal VLO(t); a demultiplexer (DPi) configured to demultiplex a resulting delayed sum signal VIF+LO(t−Δti) so as to provide a delayed intermediate frequency signal VIF(t−Δti) and a delayed local signal VLO(t−Δti); and a transmission mixer (TMXi) configured to multiply the delayed intermediate frequency signal VIF(t−Δti) by the delayed local signal VLO(t−Δti) so as to provide a delayed radio frequency signal VRF(t−Δti), each feeding circuit Fi being configured to supply the delayed radio frequency signal VRF(t−Δti) to a corresponding antenna element (Ai).
Abstract:
To stabilize radiation characteristics of a radiation element by reducing bending deformation of the radiation element and widen a band of an antenna. An antenna includes: a first flexible dielectric layer; a conductive pattern layer formed on a surface of the first dielectric layer; a second flexible dielectric layer joined to the first dielectric layer on a side opposite to the conductive pattern layer with respect to the first dielectric layer; a conductive ground layer formed between the first dielectric layer and the second dielectric layer; a rigid dielectric substrate joined to the second dielectric layer on a side opposite to the conductive ground layer with respect to the second dielectric layer; and an antenna pattern layer formed between the second dielectric layer and the dielectric substrate and including one or more radiation elements, the conductive pattern layer including a feed line for supplying electric power to the radiation elements.
Abstract:
Provided is a phased array antenna which can be used in the millimeter wave band and whose cost is lower than that of a conventional phased array antenna. The phased array antenna (1) includes: an optical modulator (OM) configured to generate a signal light beam SL by carrying out intensity modulation on a carrier light beam CL by use of a sum signal VIF+LO(t), the sum signal VIF+LO(t) being obtained by adding an intermediate frequency signal VIF(t) and a local signal VLO(t); and a time delay device (TD) configured to generate delayed signal light beams SL′1, SL′2, . . . and SL′n by imparting time delays Δt1, Δt2, . . . and Δtn to the signal light beam SL. Each feeding circuit (Fi) generates, from a corresponding delayed signal light beam SL′i, a delayed radio frequency signal VRF(t−Δti) to be supplied to an antenna element (Ai).
Abstract:
A wireless communication system includes a plurality of wireless stations. Each of at least two of the plurality of wireless stations includes, a first antenna transmitting a radio wave in a first frequency band, a second antenna transmitting a radio wave in a second frequency band lower in frequency than the first frequency band, a first transceiver transmitting and receiving a main signal in the first frequency band, and a second transceiver transmitting and receiving a control signal in the second frequency band. At least one of the at least two wireless stations includes, a variable beam antenna making a beam direction variable as the first antenna, a wide angle antenna having a radiation range equal to or wider than a variable range of the beam direction as the second antenna, and a controller controlling the beam direction of the variable beam antenna according to the control signal.
Abstract:
A wireless communication system includes a plurality of wireless stations. Each of at least two of the plurality of wireless stations includes, a first antenna transmitting a radio wave in a first frequency band, a second antenna transmitting a radio wave in a second frequency band lower in frequency than the first frequency band, a first transceiver transmitting and receiving a main signal in the first frequency band, and a second transceiver transmitting and receiving a control signal in the second frequency band. At least one of the at least two wireless stations includes, a variable beam antenna making a beam direction variable as the first antenna, a wide angle antenna having a radiation range equal to or wider than a variable range of the beam direction as the second antenna, and a controller controlling the beam direction of the variable beam antenna according to the control signal.