System and method for recommending educational resources
    41.
    发明授权
    System and method for recommending educational resources 有权
    建议教育资源的制度和方法

    公开(公告)号:US08699939B2

    公开(公告)日:2014-04-15

    申请号:US12339979

    申请日:2008-12-19

    IPC分类号: G09B3/00

    CPC分类号: G06Q10/10

    摘要: An educational recommender system and a method are provided. The method includes receiving a request to recommend a course of action related to a plurality of current students; accessing a computer database storing student data that corresponds to the plurality of current students; clustering in a computer process the plurality of current students into at least two clusters based at least on granular assessment data associated with student data corresponding to respective current students; and outputting the results of the clustering to a user. The granular assessment data includes a result of an assessment administered to respective students of the plurality of current students, and each assessment includes a plurality of questions for assessing one of the current students. The associated result includes an independent evaluation of each respective question of the plurality of questions.

    摘要翻译: 提供教育推荐系统和方法。 该方法包括接收关于推荐与多个当前学生相关的行动过程的请求; 访问存储对应于多个当前学生的学生数据的计算机数据库; 至少基于与对应于当前学生的学生数据相关联的粒度评估数据,将计算机中的多个群集进行处理,将多个当前学生进入至少两个群集; 并将聚类的结果输出给用户。 粒度评估数据包括对多名当前学生的各个学生进行评估的结果,并且每个评估包括用于评估当前学生之一的多个问题。 相关联的结果包括对各个问题的每个相应问题的独立评估。

    System and method for image color transfer based on target concepts
    42.
    发明授权
    System and method for image color transfer based on target concepts 有权
    基于目标概念的图像颜色传输系统和方法

    公开(公告)号:US08553045B2

    公开(公告)日:2013-10-08

    申请号:US12890049

    申请日:2010-09-24

    IPC分类号: G09G5/02

    摘要: A method for color transfer includes retrieving a concept color palette from computer memory corresponding to a concept selected by a user. The concept color palette includes a first set of colors, which may be statistically representative of colors of a set of predefined color palettes which have been associated with the concept. The method further includes computing an image color palette for an input image. The image color palette includes a second set of colors that are representative of pixels of the input image. Colors of the image color palette are mapped to colors of the concept color palette to identify, for colors of the image color palette, a corresponding color in the concept color palette. A transformation is computed based on the mapping. For pixels of the input image, modified color values are computed, based on the computed transformation, to generate a modified image.

    摘要翻译: 用于颜色传送的方法包括从与用户选择的概念对应的计算机存储器检索概念调色板。 概念调色板包括第一组颜色,其可以统计代表已经与该概念相关联的一组预定义调色板的颜色。 该方法还包括计算用于输入图像的图像调色板。 图像调色板包括代表输入图像的像素的第二组颜色。 图像调色板的颜色被映射到概念调色板的颜色,以针对图像调色板的颜色识别概念调色板中的对应颜色。 基于映射计算变换。 对于输入图像的像素,基于所计算的变换来计算修改的颜色值以生成修改的图像。

    Large scale image classification
    43.
    发明授权
    Large scale image classification 有权
    大规模图像分类

    公开(公告)号:US08532399B2

    公开(公告)日:2013-09-10

    申请号:US12859898

    申请日:2010-08-20

    IPC分类号: G06K9/00

    CPC分类号: G06K9/6234 G06K9/6249

    摘要: An input image representation is generated based on an aggregation of local descriptors extracted from an input image, and is adjusted by performing a power normalization, an Lp normalization such as an L2 normalization, or both. In some embodiments the generating comprises modeling the extracted local descriptors using a probabilistic model to generate the input image representation comprising probabilistic model component values for a set of probabilistic model components. In some such embodiments the probabilistic model comprises a Gaussian mixture model and the probabilistic model components comprise Gaussian components of the Gaussian mixture model. The generating may include partitioning the input image into a plurality of image partitions using a spatial pyramids partitioning model, extracting local descriptors, such as Fisher vectors, from the image partitions, and concatenating the local descriptors extracted from the image partitions.

    摘要翻译: 基于从输入图像提取的局部描述符的聚合生成输入图像表示,并且通过执行功率归一化,Lp归一化(诸如L2归一化)或两者来进行调整。 在一些实施例中,生成包括使用概率模型对所提取的局部描述符进行建模,以生成包括用于一组概率模型分量的概率模型分量值的输入图像表示。 在一些这样的实施例中,概率模型包括高斯混合模型,概率模型分量包括高斯混合模型的高斯分量。 生成可以包括使用空间金字塔分割模型将输入图像划分成多个图像分区,从图像分区中提取诸如Fisher向量的局部描述符,以及连接从图像分区提取的局部描述符。

    Photography assistant and method for assisting a user in photographing landmarks and scenes
    44.
    发明授权
    Photography assistant and method for assisting a user in photographing landmarks and scenes 有权
    摄影助手和辅助用户拍摄地标和场景的方法

    公开(公告)号:US08332429B2

    公开(公告)日:2012-12-11

    申请号:US12820647

    申请日:2010-06-22

    IPC分类号: G06F7/00

    摘要: A method and system to help photographers to take better quality pictures of landmarks and scenes are disclosed. A user is guided with examples of existing quality images, which are extracted from a database, of the same or similar landmarks or scenes. The method includes taking a query photograph that may include an image associated with a GPS location and other metadata, and using information extracted from the image to retrieve existing, similar images. The images retrieved may be ordered according to different criteria. When a user selects one as a model image, the user is provided with assistance for taking a target photograph of similar quality.

    摘要翻译: 公开了一种帮助摄影师拍摄更好的地标和场景照片的方法和系统。 使用者从相同或相似的地标或场景的数据库提取的现有质量图像的示例引导。 该方法包括拍摄可以包括与GPS位置和其他元数据相关联的图像的查询照片,以及使用从图像提取的信息来检索现有的相似图像。 检索的图像可以根据不同的标准进行排序。 当用户选择一个作为模型图像时,向用户提供用于拍摄类似质量的目标照片的帮助。

    Fast and efficient nonlinear classifier generated from a trained linear classifier
    45.
    发明授权
    Fast and efficient nonlinear classifier generated from a trained linear classifier 有权
    从训练有素的线性分类器生成的快速高效的非线性分类器

    公开(公告)号:US08280828B2

    公开(公告)日:2012-10-02

    申请号:US12483391

    申请日:2009-06-12

    IPC分类号: G06F19/24 G06F17/16

    CPC分类号: G06K9/6271 G06N99/005

    摘要: A classifier method comprises: projecting a set of training vectors in a vector space to a comparison space defined by a set of reference vectors using a comparison function to generate a corresponding set of projected training vectors in the comparison space; training a linear classifier on the set of projected training vectors to generate a trained linear classifier operative in the comparison space; and transforming the trained linear classifier operative in the comparison space into a trained nonlinear classifier that is operative in the vector space to classify an input vector.

    摘要翻译: 分类器方法包括:使用比较函数将矢量空间中的一组训练矢量投影到由一组参考矢量定义的比较空间,以在比较空间中生成相应的一组投影训练矢量; 在所述一组投影训练矢量上训练线性分类器以产生在比较空间中操作的经训练的线性分类器; 以及将在所述比较空间中操作的经训练的线性分类器变换成在所述向量空间中操作以对输入向量进行分类的经训练的非线性分类器。

    LARGE-SCALE ASYMMETRIC COMPARISON COMPUTATION FOR BINARY EMBEDDINGS
    46.
    发明申请
    LARGE-SCALE ASYMMETRIC COMPARISON COMPUTATION FOR BINARY EMBEDDINGS 有权
    用于二进制嵌入的大规模不对称计算

    公开(公告)号:US20120143853A1

    公开(公告)日:2012-06-07

    申请号:US12960018

    申请日:2010-12-03

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30247

    摘要: A system and method for comparing a query object and one or more of a set of database objects are provided. The method includes providing quantized representations of database objects. The database objects have each been transformed with a quantized embedding function which is the composition of a real-valued embedding function and a quantization function. The query object is transformed to a representation of the query object in a real-valued embedding space using the real-valued embedding function. Query-dependent estimated distance values are computed for the query object, based on the transformed query object and stored. A comparison (e.g., distance or similarity) measure between the query object and each of the quantized database object representations is computed based on the stored query-dependent estimated distance values. Data is output based on the comparison computation.

    摘要翻译: 提供了一种用于比较查询对象与一组数据库对象中的一个或多个的系统和方法。 该方法包括提供数据库对象的量化表示。 数据库对象每个都已经用量化嵌入函数进行了变换,该嵌入函数是实值嵌入函数和量化函数的组合。 使用实值嵌入函数将查询对象转换为实值嵌入空间中的查询对象的表示。 基于所转换的查询对象并存储查询对象,计算与查询相关的估计距离值。 基于存储的查询相关估计距离值来计算查询对象和每个量化数据库对象表示之间的比较(例如距离或相似度)度量。 基于比较计算输出数据。

    IMAGE CLASSIFICATION EMPLOYING IMAGE VECTORS COMPRESSED USING VECTOR QUANTIZATION
    47.
    发明申请
    IMAGE CLASSIFICATION EMPLOYING IMAGE VECTORS COMPRESSED USING VECTOR QUANTIZATION 有权
    使用矢量量化压缩的图像分类图像分类

    公开(公告)号:US20120076401A1

    公开(公告)日:2012-03-29

    申请号:US12890789

    申请日:2010-09-27

    IPC分类号: G06K9/62 G06K9/48

    CPC分类号: G06K9/4676

    摘要: Local descriptors are extracted from an image. An image vector is generated having vector elements indicative of parameters of mixture model components of a mixture model representing the extracted local descriptors. The image vector is compressed using a vector quantization algorithm to generate a compressed image vector. Optionally, the compressing comprises splitting the image vector into a plurality of sub-vectors each including at least two vector elements, compressing each sub-vector independently using the vector quantization algorithm, and concatenating the compressed sub-vectors to generate the compressed image vector. Optionally, each sub-vector includes only vector elements indicative of parameters of a single mixture model component, and any sparse sub-vector whose vector elements are indicative of parameters of a mixture model component that does not represent any of the extracted local descriptors is not compressed.

    摘要翻译: 从图像中提取局部描述符。 生成具有指示表示所提取的局部描述符的混合模型的混合模型分量的参数的向量元素的图像向量。 使用矢量量化算法压缩图像矢量以生成压缩图像矢量。 可选地,压缩包括将图像向量分成多个子向量,每个子向量包括至少两个向量元素,使用向量量化算法独立地压缩每个子向量,并且连接压缩的子向量以生成压缩图像向量。 可选地,每个子向量仅包括指示单个混合模型组件的参数的向量元素,并且其向量元素指示不表示任何提取的局部描述符的混合模型组件的参数的任何稀疏子向量不是 压缩

    BAGS OF VISUAL CONTEXT-DEPENDENT WORDS FOR GENERIC VISUAL CATEGORIZATION
    48.
    发明申请
    BAGS OF VISUAL CONTEXT-DEPENDENT WORDS FOR GENERIC VISUAL CATEGORIZATION 有权
    用于一般视觉分类的视觉语境相关词包

    公开(公告)号:US20110091105A1

    公开(公告)日:2011-04-21

    申请号:US12971087

    申请日:2010-12-17

    申请人: Florent Perronnin

    发明人: Florent Perronnin

    IPC分类号: G06K9/62 G06K9/00

    摘要: Category context models (64) and a universal context model (62) are generated including sums of soft co-occurrences of pairs of visual words in geometric proximity to each other in training images (50) assigned to each category and assigned to all categories, respectively. Context information (76) about an image to be classified (70) are generated including sums of soft co-occurrences of pairs of visual words in geometric proximity to each other in the image to be classified. For each category (82), a comparison is made of (i) closeness of the context information about the image to be classified with the corresponding category context model and (ii) closeness of the context information about the image to be classified with the universal context model. An image category (92) is assigned to the image to be classified being based on the comparisons.

    摘要翻译: 产生类别上下文模型(64)和通用上下文模型(62),包括在分配给每个类别并分配给所有类别的训练图像(50)中彼此几何接近的视觉对对的软对共和的和, 分别。 生成关于要分类的图像(70)的上下文信息(76),包括在要分类的图像中彼此几何接近的视觉对的双对的软合并的和。 对于每个类别(82),比较(i)关于要分类的图像的上下文信息与相应的类别上下文模型的接近度,以及(ii)关于将被分类为通用的图像的上下文信息的接近度 上下文模型。 基于比较将图像类别(92)分配给要分类的图像。

    SYSTEM AND METHOD FOR RECOMMENDING EDUCATIONAL RESOURCES
    49.
    发明申请
    SYSTEM AND METHOD FOR RECOMMENDING EDUCATIONAL RESOURCES 有权
    推荐教育资源的制度与方法

    公开(公告)号:US20100227306A1

    公开(公告)日:2010-09-09

    申请号:US12771534

    申请日:2010-04-30

    IPC分类号: G09B7/00

    CPC分类号: G06Q10/10

    摘要: An educational recommender system and a method for recommending an educational game to be used by a group of at least two students are provided. The method includes receiving a request to recommend an educational game to use with the group of students, and accessing student data relating to the at least two students including granular assessment data. The granular assessment data includes a result of at least one assessment administered to respective students, wherein each assessment includes a plurality of problems for assessing at least one of the students and the associated result includes an independent evaluation of each respective problem. The method further includes selecting an educational game that exercises the students in an academic area, including selecting the level of the academic area exercised based on granular assessment data associated with each of the respective students.

    摘要翻译: 提供一种教育推荐系统和一种用于推荐由一组至少两名学生使用的教育游戏的方法。 该方法包括接收推荐与该组学生一起使用的教育游戏的请求,以及访问与至少两个学生相关的学生数据,包括粒度评估数据。 粒度评估数据包括对相应学生进行至少一次评估的结果,其中每个评估包括用于评估至少一个学生和相关结果的多个问题包括对每个相应问题的独立评估。 该方法还包括选择在学术领域中练习学生的教育游戏,包括根据与每个学生相关联的粒度评估数据选择所执行的学术领域的水平。

    SYNCHRONIZING IMAGE SEQUENCES
    50.
    发明申请
    SYNCHRONIZING IMAGE SEQUENCES 有权
    同步图像序列

    公开(公告)号:US20100128919A1

    公开(公告)日:2010-05-27

    申请号:US12277779

    申请日:2008-11-25

    IPC分类号: G06K9/00 G06K9/68

    摘要: As set forth herein, a computer-based method is employed to align a sequences of images. Metadata associated with images from two or more sources is received and a time stamp is extracted from the metadata. The images are sorted into sequences based at least in part upon the image source. The similarity of images from disparate sequences is measured and image pairs from disparate sequences with a similarity greater than a predetermined threshold are identified. A sequence of images is aligned by minimizing the misalignment of pairs.

    摘要翻译: 如本文所述,采用基于计算机的方法来对准图像序列。 接收与来自两个或多个源的图像相关联的元数据,并从元数据中提取时间戳。 至少部分地基于图像源将图像分类成序列。 测量来自不同序列的图像的相似性,并且识别具有大于预定阈值的相似性的不同序列的图像对。 通过最小化对的不对准来对齐一系列图像。