摘要:
Methods and systems for reducing read/write head track misregistration are described. According to one embodiment, a first signal is received from a first capacitive sensor that faces a surface of a disk associated with a disk drive. A second signal is received from a second capacitive sensor that faces the surface of the disk. A determination is made as to whether the disk is being moved along its axis of rotation or whether the disk is tilting. Read/write head track misregistration is reduced based on the determination of whether the disk drive is being moved along an axis of rotation or whether the disk is tilting.
摘要:
A data recording disk drive has one or more capacitive sensors for sensing out-of-plane vibration of the disk or disks. The sensors are attached to a support structure that is attached to the disk drive housing. Each sensor is associated with a disk and faces a surface of the disk near the outer perimeter of the disk and close to the recording head. The support structure can be made of a metal or a high-strength plastic and can be a separate structure mounted to the housing, or integrated as part of the single-piece housing casting. If it is metallic, as would be the case if it were integrated with the housing, then layers of insulating material separate the sensors from the support structure. A support structure that serves other functions in the disk drive can also function as the support structure for the capacitive sensors.
摘要:
Embodiments of the present invention provide a method and a system for generating optimal feedforward signal for the seek control to suppress the RTV (Random Transient Vibrations) and the seek acoustic noise. One aspect is directed to a method of providing a revised feedforward signal using an adaptive filter in a feedforward control system for controlling an actuator to move a head to seek a track and settle on the track of a disk in a disk drive apparatus. The method comprises performing a seek operation of the head using an initial feedforward signal; obtaining an error signal at settling after performing the seek operation; determining filter characteristics of the adaptive filter to minimize the error signal; and implementing the adaptive filter having the determined filter characteristics in the feedforward control system to produce a revised feedforward signal for controlling the actuator for moving the head in the disk drive apparatus.
摘要:
A magnetic recording disk drive with rotational vibration (RV) cancellation uses the position error signal (PES) and the signal from a RV sensor to determine when to enable and disable RV cancellation. An RV feedforward compensation signal to be summed with the VCM control signal is “switchable”, meaning that it can be enabled or disabled by the disk drive servo control processor. The determination to enable or disable is made from a comparison of the PES with a threshold PES, which may be an estimate of the off-track position of the head calculated from the RV sensor signal. The estimated off-track is compared to the absolute value of the actual or measured PES. If the estimated off-track is smaller than the actual PES, then the state of the RV cancellation is switched, i.e., if it is enabled it is disabled and if it is disabled it is enabled.
摘要:
A magnetic recording disk drive has a patterned magnetic recording disk with data blocks of magnetizable material separated by nonmagnetic regions, a write-clock-generation circuit for timing write pulses to the write head, and a rotational vibration sensor that adjusts the timing of the write pulses to correct for errors caused by rotational disturbances to the disk drive. The write-clock-generation circuit receives a reference clock signal synchronized to disk rotation and multiplies it to generate a higher-frequency write-clock signal. The write-clock-generation circuit includes a phase detector that compares the phase of the reference clock signal and the write-clock signal and provides an error signal. The output of the rotational vibration sensor is summed with the phase detector error signal to compensate for disk rotation speed changes caused by rotational disturbances.
摘要:
A method for secondary-actuator failure-detection and recovery in a dual-stage actuator disk drive includes running a calibration test by the servo control processor and measuring the position of the secondary actuator relative to its neutral position in response to the calibration test. The secondary-actuator failure detection and calibration test can be performed on a regular schedule or at selected times, such as at disk drive start-up. With the primary actuator maintaining the read/write head on a data track in track-following mode, the servo control processor generates a test signal to the secondary actuator and receives a relative-position signal (RPS) from the relative-position sensor in response to the test signal. The test comprises two measurements: a measurement of the secondary actuator static characteristics, and a measurement of the secondary actuator dynamic characteristics.
摘要:
A hard disk device includes a servo control unit that constitutes a servo loop for a head seek for performing read/write of data from/to a recording medium, a correction signal generation unit for generating a correction signal for correcting a control by the servo control unit based on an output of a predetermined sensor, and a correction signal control unit for estimating an effect of supplying the correction signal to the servo loop and for controlling whether or not the correction signal is to be supplied to the servo loop in response to a result of the estimation. Moreover, the gain of the sensor is dynamically controlled in response to the above estimation result.
摘要:
A data recording disk drive has a plurality of capacitive sensors, each sensor facing a surface of an associated disk, a capacitance sensing circuit for converting the sensed capacitance to a voltage representative of the distance between the sensor and the disk surface, and a feedforward controller that receives the voltage signal. The feedforward controller has a transfer function with gain and phase characteristics designed to match the transfer function from the out-of-plane disk vibration to the position of the read/write head while accounting for the effects of the sensor dynamics and the dynamics of the actuator. The output from the feedforward controller is combined with the output from the disk drive's servo feedback controller so that the effects of disk vibration on track misregistration of the head are removed from the control signal to the actuator.
摘要:
A data storage device with improved data storage densities, coupled with lower hard error and write-inhibit events is described. A feed-forward write inhibit (FFWI) method enables data tracks to be written more densely. Alternatively, the FFWI method may reduce the hard error and write inhibit events to improve data storage performance. A concept of virtual tracks enables the FFWI method to be applied to the writing of circular data tracks with non-circular servo tracks, or to the writing of non-circular data tracks with PES data from circular servo tracks—in both cases, improvements to performance and/or storage densities are enabled. The FFWI method may also be applied to the case of both non-circular servo and data tracks.
摘要:
Patterned magnetic media are described in which the servo sectors include at least two PES offset segments that can be used for the position error signal (PES) and identification of local track position. The two PES offset segments deviate from the track centerline in opposite directions. The lengths of the offset PES offset segments are systematically varied in a repeating pattern to provide a unique servo signal pattern for each track in a local group of adjacent tracks. The locally unique servo sector pattern allows the servo system to use the pattern of the signals generated from the offset and non-offset segments to determine the local track position, which is similar to information provided by the low order Gray code bits in prior art designs. Therefore, the number of bits in the track ID code can be reduced.