Abstract:
A system for mounting an engine to an aircraft includes a rigid structure coupled to a wing and including a forward mount interface and an aft mount interface. The system includes a frame including a first support connection and a second support connection spaced apart from the first support connection. A linkage structure couples the frame to the rigid structure and includes a first linkage pair extending between the forward mount interface and the first support connection at a first angle with respect to a rotational axis, and a second linkage pair extending between the aft mount interface and the second support connection at a second angle with respect to the rotational axis.
Abstract:
A turbine engine assembly is provided. The turbine engine assembly includes a core gas turbine engine including a first rotatable drive shaft, a first low-pressure turbine section in serial flow communication with the gas turbine engine, a gear assembly coupled to the first low-pressure turbine section through a second rotatable drive shaft, and a second low-pressure turbine section in serial flow communication with the core gas turbine engine. The first low-pressure turbine section is configured to rotate in a first rotational direction, and the second low-pressure turbine section is configured to rotate in a second rotational direction opposite the first rotational direction. The first and second low-pressure turbine sections are spaced axially apart from each other. The turbine engine assembly also includes a fan assembly coupled to the first low-pressure turbine section through the gear assembly, and coupled to the second low-pressure turbine section through a third rotatable drive shaft.
Abstract:
A thrust reverser system and operation suitable for turbofan engines. Blocker doors of the thrust reverser system have stowed positions in which each door is disposed between a fixed structure and a translating cowl of the engine. The translating cowl is translated in an aft direction of the engine to define at least one opening with the fixed structure, after which the translating cowl is further translated aft to deploy linkage mechanisms that are received in slots recessed into the blocker doors and pivotably connect the doors to the fixed structure. Deployment of the linkage mechanisms from the slots causes the blocker doors to rotate to a deployed position in which each door extends across a bypass duct of the engine and diverts bypass air within the duct through the opening.
Abstract:
An apparatus for a turbine engine comprising an outer casing, an engine core provided within outer casing and having a at least one set of blades, and through which gasses flow in a forward to aft direction, an outer drum located within the outer casing to define an annular cavity. A set of seals extending between the first surface and the second surface to define at least one cooled cavity within the annular cavity.
Abstract:
A method includes installing a first stage assembly including a first ring member and a first stage of rotor blades, the first ring member defining a first end and the first stage of rotor blades defining a second end; installing a second stage assembly including a second ring member and a second stage of rotor blades, the second ring member defining a first end and the second stage of rotor blades defining a second end, wherein installing the second stage assembly includes fitting the first end of the second ring member to the second end of the first stage of rotor blades to form a first attachment interface; and pressing the second stage assembly against the first stage assembly to fix the first attachment interface.
Abstract:
A propulsion system, the propulsion system comprising a rotating element, a stationary element, and an inlet between the rotating element and the stationary element, wherein the inlet passes radially inward of the stationary element; wherein the inlet passes radially inward of the stationary element; wherein the inlet leads to an inlet duct containing a ducted fan having an axis of rotation and a plurality of blades; and wherein the inlet duct divides into a first duct and a second duct, separate from the first duct. A method of operating a propulsion system, comprising the steps of: operating a first rotating fan assembly to produce a first stream of air; directing a portion of the first stream of air into a second ducted rotating fan assembly; operating the second ducted rotating fan assembly to produce a second stream of air; dividing the second stream of air into a core stream and a fan stream; and directing the core stream into a gas turbine engine core.
Abstract:
The present disclosure is directed to a gas turbine engine defining a longitudinal direction, a radial direction, and a circumferential direction, and an upstream end and a downstream end along the longitudinal direction. The gas turbine engine includes a turbine section and a gear assembly within or downstream of the turbine section. The turbine section includes a first rotating component and a second rotating component along the longitudinal direction. The first rotating component includes one or more connecting airfoils coupled to a radially extended rotor, and the second rotating component includes an inner shroud defining a plurality of inner shroud airfoils extended outward of the inner shroud along the radial direction. The second rotating component is coupled to a second shaft connected to an input accessory of the gear assembly, and the first rotating component is coupled to an output accessory of the gear assembly. The output accessory rotates the first rotating component about the axial centerline at a first speed and wherein the second rotating component rotates about the axial centerline at a second speed.
Abstract:
An engine includes a static frame member; a spool configured to rotate relative to the static frame member during operation of the engine; a gearbox coupled to the spool; and a gearbox coupling assembly mounting the gearbox to the static frame member using a plurality of moveable connection members, each moveable connection member including a sliding connection allowing for movement of the gearbox relative to the static frame member in a plane perpendicular to an axial direction of the engine.
Abstract:
A gas turbine engine includes a frame member extending generally along an axial direction and defining a plurality of slots spaced along a circumferential direction; and a gearbox including a ring gear, a plurality of planet gears, and a sun gear, the plurality of planet gears each positioned at least partially in a respective slot of the plurality of slots defined by the frame member such that the frame member extends through the gearbox.
Abstract:
A method includes installing a first stage assembly including a first ring member and a first stage of rotor blades, the first ring member defining a first end and the first stage of rotor blades defining a second end; installing a second stage assembly including a second ring member and a second stage of rotor blades, the second ring member defining a first end and the second stage of rotor blades defining a second end, wherein installing the second stage assembly includes fitting the first end of the second ring member to the second end of the first stage of rotor blades to form a first attachment interface; and pressing the second stage assembly against the first stage assembly to fix the first attachment interface.