ACTIVE LEARNING VIA A SAMPLE CONSISTENCY ASSESSMENT

    公开(公告)号:US20230325676A1

    公开(公告)日:2023-10-12

    申请号:US18333998

    申请日:2023-06-13

    Applicant: Google LLC

    Abstract: A method includes obtaining a set of unlabeled training samples. For each training sample in the set of unlabeled training samples generating, the method includes using a machine learning model and the training sample, a corresponding first prediction, generating, using the machine learning model and a modified unlabeled training sample, a second prediction, the modified unlabeled training sample based on the training sample, and determining a difference between the first prediction and the second prediction. The method includes selecting, based on the differences, a subset of the set of unlabeled training samples. For each training sample in the subset of the set of unlabeled training samples, the method includes obtaining a ground truth label for the training sample, and generating a corresponding labeled training sample based on the training sample paired with the ground truth label. The method includes training the machine learning model using the corresponding labeled training samples.

    Distance-based learning confidence model

    公开(公告)号:US11487970B2

    公开(公告)日:2022-11-01

    申请号:US17031144

    申请日:2020-09-24

    Applicant: Google LLC

    Abstract: A method for jointly training a classification model and a confidence model. The method includes receiving a training data set including a plurality of training data subsets. From two or more training data subsets in the training data set, the method includes selecting a support set of training examples and a query set of training examples. The method includes determining, using the classification model, a centroid value for each respective class. For each training example in the query set of training examples, the method includes generating, using the classification model, a query encoding, determining a class distance measure, determining a ground-truth distance, and updating parameters of the classification model. For each training example in the query set of training examples identified as being misclassified, the method further includes generating a standard deviation value, sampling a new query, and updating parameters of the confidence model based on the new query encoding.

Patent Agency Ranking