Abstract:
The present invention relates, at least in part, to a process for making chlorotrifluoroethylene (CFO-1113) from 1,2-dichloro-1,1,2-trifluoroethane (HCFC-123a). In certain aspects, the process includes dehydrochlorinating 1,2-dichloro-1,1,2-trifluoroethane (HCFC-123a) in the presence of a catalyst selected from the group consisting of (i) one or more metal halides; (ii) one or more halogenated metal oxides; (iii) one or more zero-valent metals or metal alloys; (iv) combinations thereof.
Abstract:
The present invention discloses a manufacturing process to produce high purity 1234yf from 245eb, which preferably includes the removal of impurities present in 245eb raw material, the dehydrofluorination of 245eb, and the removal of impurities present in final crude product. The disclosed manufacturing process allows the production of a 1234yf product with lower the levels of 1225ye and/or trifluoropropene, preferably in amounts of less than about 500, and 50 ppm, respectively.
Abstract:
The present invention discloses a manufacturing process to produce high purity 1234yf from 245eb, which preferably includes the removal of impurities present in 245eb raw material, the dehydrofluorination of 245eb, and the removal of impurities present in final crude product. The disclosed manufacturing process allows the production of a 1234yf product with lower the levels of 1225ye and/or trifluoropropene, preferably in amounts of less than about 500, and 50 ppm, respectively.
Abstract:
The present invention relates, in part, to the discovery that, during the fluorination of certain fluoroolefin starting reagents, particularly, 1,1,2,3-tetrachloropropene (1230xa), oligomerization/polymerization of such starting reagents reduces the conversion process and leads to increased catalyst deactivation. The present invention also illustrates that providing one or more organic co-feed to the fluooolefin starting stream reduces such oligomerization/polymerization and improves catalystic stability.
Abstract:
Disclosed is a composition comprised of at least one compound selected from 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoro-1-propene and 1-chloro-3,3,3-trifluoropropene and halogenated impurity selected from the group consisting of HFO-1141 (CH2═CHF), HCFO-1140 (CH2═CHCl), and HCFO-1131 (CH2═CFCl and/or trans/cis-CHF═CHCl) and combination thereof, said halogenated impurity being present in said composition in an amount of 50 ppm or less.
Abstract:
Provided are azeotropic or azeotrope-like mixtures of 1,1,3,3-tetrachloroprop-1-ene (HCO-1230za) and hydrogen fluoride. Such compositions are useful as feed stock in the production of HFC-245fa and HCFO-1233zd.
Abstract:
Disclosed is a process for the production of 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) which includes reacting a propane feedstock comprising tetrachlorofluoropropanes, trichlorodifluoropropanes, dichlorotrifluoropropanes, or a mixture thereof, in the presence of a solid catalyst. The process generally comprises the following four steps: (i) providing a propane feedstock comprising trichlorodifluoropropanes and dichlorotrifluoropropanes, (ii) reacting the feedstock in a vapor phase reactor in the presence of HF and in the presence of a solid catalyst under conditions effective to form a product stream comprising HCFO-1233zd and unconverted starting materials, (iii) recovering or removing HCl and HF, and (iv) isolating HCFO-1233zd(E), HCFO-1233zd(Z), or both.
Abstract:
The present process relates to a process comprising: contacting a mixture comprising 2,3,3,3-tetrafluoropropene and at least one halogenated ethylene impurity with at least one adsorbent or at least one chemisorption catalyst to reduce the concentration of said at least one halogenated ethylene impurity.
Abstract:
The invention relates to a process to prepare tetrahalopropenes, such as 2-chloro-3,3,3-trifluoropropene (1233xf). The process comprises atomizing a feed material, such as 1,1,2,3-tetrachloropropene (1230xa) and the like, and mixing it with superheated HF to form a vaporized composition of feed material and HF with substantially instantaneous contact with a vapor phase fluorination catalyst. The invention extends catalyst life and forestalls catalyst deactivation.
Abstract:
The present invention relates, in part, to the discovery that the presence of impurities in a reactor for dehydrochlorinating HCFC-244bb to HFO-1234yf results in a reduced conversion rate and/or a selectivity changeover from HFO-1234yf to HCFO-1233xf. By substantially removing such impurities, it is shown that the conversion rate may be improved and selectivity to HFO-1234yf via dehydrochlorination of HCFC-244bb is also improved.