摘要:
Provided is a method for storing a fluoro-2-butene by which isomerization reaction is unlikely to proceed during storage. A fluoro-2-butene represented by general formula C4HxFy where x is 0 or more and 7 or less, y is 1 or more and 8 or less, and x+y is 8 contains or does not contain hydrogen fluoride as an impurity. The fluoro-2-butene is stored in a container in which the concentration of hydrogen fluoride is 100 ppm by volume or less in a gas phase portion when the fluoro-2-butene contains hydrogen fluoride.
摘要:
Heterogenous azeotrope or azeotrope-like compositions comprising 2-chloro-3,3,3-trifluoropropene (HFCO-1233xf) and water which may include from about 0.09 wt. % to about 92.69 wt. % 2-chloro-3,3,3-trifluoropropene (HFCO-1233xf) and from about 7.31 wt. % to about 99.91 wt. % water and having a boiling point between about 12.0° C. and about 13.6° C. at a pressure of between about 12.5 psia and about 16.5 psia. The azeotrope or azeotrope-like compositions may be used to separate impurities, including water, from 2-chloro-3,3,3-trifluoropropene (HFCO-1233xf).
摘要:
The invention relates to a process for reducing the concentration of a fluorinated alkyne impurity, such as 3,3,3-trifluoropropyne (TFPY), in 2,3,3,3-tetrafluoropropene (HFO-1234yf) which comprises contacting such a mixture with a caustic material, such as sodium hydroxide (NaOH), under conditions effective to reduce the concentration of the fluorinated alkyne impurity, including in some practices reducing the concentration by at least about 50%.
摘要:
The present invention relates, in part, to the discovery that, during the fluorination of certain fluoroolefin starting reagents, oligomerization/polymerization of such reagents reduces the conversion process and leads to increased catalyst deactivation. The present invention also illustrates that vaporizing such starting reagents in the presence of one or more organic co-feed reduces such oligomerization/polymerization and improves catalytic stability.
摘要:
The use of a C3 to C6 alkene compound including a sole double bond, for limiting or preventing the isomerization of trans-1-chloro-3,3,3-trifluoropropene to cis-1-chloro-3,3,3-trifluoropropene. Also, a composition including 1-chloro-3,3,3-trifluoropropene and a C3 to C6 alkene compound including a sole double bond, and also to various uses of this composition, such as a process for heating or cooling a fluid.
摘要:
The use of a C3 to C6 alkene compound including a sole double bond, for limiting or preventing, for example, the isomerization of trans-1-chloro-3,3,3-trifluoropropene to cis-1-chloro-3,3,3-trifluoropropene. Also, a composition including 1-chloro-3,3,3-trifluoropropene and a C3 to C6 alkene compound including a sole double bond, and also to various uses of this composition.
摘要:
The present invention provides a method for producing 1233yd that enables high conversion of the starting compound and high selectivity of 1233yd.The present invention provide a method for producing 1-chloro-2,3,3-trifluoropropene (1233yd), comprising the step of dehydrofluorinating 3-chloro-1,1,2,2-tetrafluoropropane (244ca).
摘要:
The present invention relates to an improved method for manufacturing 2-chloro-3,3,3-trifluoropropene, (HCFC-1233xf) by reacting 1,1,2,3-tetrachloropropene, 1,1,1,2,3-pentachloropropane, and/or 2,3,3,3-tetrachloropropene with hydrogen fluoride, in a vapor phase reaction vessel in the presence of a vapor phase fluorination catalyst and stabilizer. HCFC-1233xf is an intermediate in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf) which is a refrigerant with low global warming potential.
摘要:
The present invention provides a process for preparing 2,3,3,3-tetrafluoropropene, comprising the following steps: (a) catalytic reaction of 1,1,1,2,3-pentachloropropane and/or 1,1,2,2,3-pentachloropropane with HF into product 2-chloro-3,3,3-trifluoropropene; (b) catalytic reaction of the thus-obtained 2-chloro-3,3,3-trifluoropropene into 2,3,3,3-tetrafluoropropene.
摘要:
This invention is directed to a method for mitigating HCl generation during 1230xa purification, which comprises the steps of; (a) adding a chelating agent into 1230xa crude, and (b) conducting the 1230xa purification in the presence of said chelating agent at a quantity sufficient to reduce or prevent 1230xa decomposition. Examples of chelating agent include tributyl phosphate (TBP), tripropyl phosphate (TPP), and triethyl phosphate (TEP). The concentration of chelating agent in 1230xa crude can range from 0.001 to 20 wt %, preferably from 0.01 to 10 wt %, and more preferably from 0.1 to 5 wt %.