Abstract:
A method for minimizing datalink message propagation time comprises determining whether a datalink TPDU ready for transmission requires an acknowledgement; transmitting the TPDU, starting a transport retry timer, and setting a transmission count to one, when acknowledgement is required; determining whether acknowledgement is received after transmitting the TPDU; determining whether the retry timer has expired if acknowledgement not received; determining whether a hold mode is in effect when the retry timer has expired; determining whether a transport inactivity timer has expired when the hold mode is in effect; determining whether the hold mode is still in effect when the inactivity timer has not expired; when the hold mode is no longer in effect, incrementing the transmission count by one; and retransmitting the datalink TPDU and restarting the retry timer, when the transmission count is less than a predetermined maximum value and the inactivity timer has not expired.
Abstract:
In one embodiment, a method for processing vehicle messages is provided. The method comprises: receiving a vehicle message for transmission; determining whether a condition exists to expedite transmission of the vehicle message; determining if a preferential sub-network is available; determining if at least one less preferential sub-network is available; and when the condition exists, when the preferential sub-network is not available for use, and the less preferential sub-network is available, expediting the transmission of the vehicle message over a less preferential sub-network.
Abstract:
Systems and methods for secure communications over broadband datalinks are provided. In certain implementations, a system for providing secure communications through a communication link includes a first communication unit that includes a processing unit that is configured to execute code that causes the first communication unit to verify messages with a firewall as they are received by the first communication unit; remove encapsulation data that encapsulates a message received from a second communication unit; check a digital signature appended to the message received from a second communication unit through a non-secure communication link; perform an integrity check on the message; and when the message is verified through the digital signature and the integrity check, process the message; wherein removal of the encapsulation data and implementation of the firewall is in a first partition and performance of the integrity check and verification of the digital signature is in a second partition.
Abstract:
A method for minimizing datalink message propagation time comprises determining whether a datalink TPDU ready for transmission requires an acknowledgement; transmitting the TPDU, starting a transport retry timer, and setting a transmission count to one, when acknowledgement is required; determining whether acknowledgement is received after transmitting the TPDU; determining whether the retry timer has expired if acknowledgement not received; determining whether a hold mode is in effect when the retry timer has expired; determining whether a transport inactivity timer has expired when the hold mode is in effect; determining whether the hold mode is still in effect when the inactivity timer has not expired; when the hold mode is no longer in effect, incrementing the transmission count by one; and retransmitting the datalink TPDU and restarting the retry timer, when the transmission count is less than a predetermined maximum value and the inactivity timer has not expired.
Abstract:
A method to provide access to air traffic control centers to a crew member for context management (CM) logon is provided. The method includes accessing a flight plan for an aircraft at a processor; accessing a listing of air traffic control centers; generating a subset of the air traffic control centers at the processor; and displaying the subset of the air traffic control centers as at least a part of a prioritized listing of the air traffic control centers on a display for the crew member. The generating is based on at least one of: an ATC-center authority coverage area overlapping a flight path associated with the flight plan; and a pre-selected distance from the flight path.
Abstract:
A method of ensuring secure and cost effective communication of aeronautical data to and from an aircraft is provided. The method includes uplinking air-ground aircraft data communications via an aeronautical safety data link and downlinking air-ground aircraft data communications via a consumer data link separated from the aeronautical safety data link by a one-way firewall.
Abstract:
Embodiments are directed to a system comprising a communications management system and an AoIP gateway server on a vehicle. The system is configured to receive and send ACARS messages directly to and from at least one ground operations center. In certain embodiments, ACARS messages are converted between a format that is native to the communications management system to a format that is native to the ground operations center. Accordingly, ACARS messages can be sent directly from a vehicle to a ground operations center without routing the ACARS message to a datalink service provider.
Abstract:
Systems and methods for detection of network issues and health reporting to ground-based stakeholders are described herein. In exemplary embodiments, a system includes multiple aircraft, wherein an aircraft in the multiple aircraft communicates through one or more communication links. The aircraft includes processors that compile network event information related to degraded communication link events. Further, the aircraft includes memory units that store a degraded link event report and a configuration database, wherein the degraded link event report stores the network event information related to the degraded communication link events as directed the configuration database. The system additionally includes a network issue detector, in communication with the multiple aircraft, which receives degraded link event reports from the multiple aircraft, wherein the network issue detector includes processors that identify systemic degraded data link network problems with the communication links based on context identified in the degraded link event reports.
Abstract:
An embodiment of a communication management unit (CMU) includes emulator and data-mining circuits. The emulator circuit is configured to generate a data request having a same format as a data request from a vehicle communications center, to send the data request to a subsystem disposed on a vehicle, and to receive data sent by the subsystem in response to the data request. The data-mining circuit is configured to provide at least some of the received data to a determining circuit configured to determine information in response to the provided data. For example, such a CMU can request flight-plan data from a flight management subsystem (FMS) by sending, to the FMS, an emulated data-request message having the same format as a data-request message from a ground-based aircraft operations center. That is, the CMU can “fool” the FMS into “thinking” that the data-request message originated from the ground-based aircraft operations center.
Abstract:
A communication system is provided. The communication system comprises a communication management unit (CMU) comprising a processor, a memory and an input/output port; wherein the processor is configured to run a distribution application operable to: when data is received from a ground system at the input/output port, transmit the data to a designated first device and transmit selected data of the data received at the input/output port to at least one designated second device; and when data is received from the first device or the second device, transmit the data to the other of the first and second device as well as an intended recipient of the data.