摘要:
A system, method and article of manufacture are provided for programmable processing in a computer graphics pipeline. Initially, data is received from a source buffer. Thereafter, programmable operations are performed on the data in order to generate output. The operations are programmable in that a user may utilize instructions from a predetermined instruction set for generating the same. Such output is stored in a register. During operation, the output stored in the register is used in performing the programmable operations on the data.
摘要:
A method and system for overriding state information programmed into a processor using an application programming interface (API) avoids introducing error conditions in the processor. An override monitor unit within the processor stores the programmed state for any setting that is overridden so that the programmed state can be restored when the error condition no longer exists. The override monitor unit overrides the programmed state by forcing the setting to a legal value that does not cause an error condition. The processor is able to continue operating without notifying a device driver that an error condition has occurred since the error condition is avoided.
摘要:
Systems and methods for using multiple versions of programmable constants within a multi-threaded processor allow a programmable constant to be changed before a program using the constants has completed execution. Processing performance may be improved since programs using different values for a programmable constant may execute simultaneously. The programmable constants are stored in a constant buffer and an entry of a constant buffer table is bound to the constant buffer. When a programmable constant is changed it is copied to an entry in a page pool and address translation for the page pool is updated to correspond to the old version (copy) of the programmable constant. An advantage is that the constant buffer stores the newest version of the programmable constant.
摘要:
The present invention provides alignment and ordering of vector elements for SIMD processing. In the alignment of vector elements for SIMD processing, one vector is loaded from a memory unit into a first register and another vector is loaded from the memory unit into a second register. The first vector contains a first byte of an aligned vector to be generated. Then, a starting byte specifying the first byte of an aligned vector is determined. Next, a vector is extracted from the first register and the second register beginning from the first bit in the first byte of the first register continuing through the bits in the second register. Finally, the extracted vector is replicated into a third register such that the third register contains a plurality of elements aligned for SIMD processing. In the ordering of vector elements for SIMD processing, a first vector is loaded from a memory unit into a first register and a second vector is loaded from the memory unit into a second register. Then, a subset of elements are selected from the first register and the second register. The elements from the subset are then replicated into the elements in the third register in a particular order suitable for subsequent SIMD vector processing.
摘要:
Vertices defining a graphics primitive may be processed in homogeneous space and projected into normalized device coordinate space by dividing each coordinate of a vertex by w. When the w coordinate for a vertex is equal to zero, the projected coordinates are set equal to the homogeneous coordinate values. During a viewport transform operation, only the viewport scale is applied rather than applying the viewport scale and viewport bias to produce the vertex in device coordinate space (screen space). Furthermore, when an edge slope is computed for a vertex with a w coordinate equal to zero, the slope is set equal to the vertex in device coordinate space rather than the difference of the two vertices defining the edge. Therefore, a vertex at infinity is correctly positioned avoiding the introduction of visual artifacts.
摘要:
Systems and methods for shaping a shared edge between two or more N-patches may be used to eliminate gaps when normal vectors along a shared edge are not equal. More particularly, vertices and normals of a polygon, tristip, quadstrip and so on, are obtained. Shared vertices corresponding to the shared edge are identified. When normal vectors at a shared vertex are determined to differ, tangents of the normal vectors are computed. These tangents may be used to optionally shape the shared edge, along with control points.
摘要:
The present invention provides alignment and ordering of vector elements for SIMD processing. In the alignment of vector elements for SIMD processing, one vector is loaded from a memory unit into a first register and another vector is loaded from the memory unit into a second register. The first vector contains a first byte of an aligned vector to be generated. Then, a starting byte specifying the first byte of an aligned vector is determined. Next, a vector is extracted from the first register and the second register beginning from the first bit in the first byte of the first register continuing through the bits in the second register. Finally, the extracted vector is replicated into a third register such that the third register contains a plurality of elements aligned for SIMD processing. In the ordering of vector elements for SIMD processing, a first vector is loaded from a memory unit into a first register and a second vector is loaded from the memory unit into a second register. Then, a subset of elements are selected from the first register and the second register. The elements from the subset are then replicated into the elements in the third register in a particular order suitable for subsequent SIMD vector processing.
摘要:
A programmable geometry engine is described. One embodiment of the programmable geometry engine includes a programmable primitive engine configured to receive primitive commands that include information for processing vertex data using user-developed programs or subroutines. The programmable primitive engine also is configured to transmit program commands that include program pointers and data pointers. In addition, the programmable geometry engine includes a processing engine configured to receive the program commands. The processing engine is further configured to retrieve the user-developed programs or subroutines using the program pointers and to retrieve vertex data using the data pointers. Also, the processing engine is configured to process the vertex data based on instructions included in the user-developed programs or subroutines to produce processed vertex data and to transmit results to the programmable primitive engine.
摘要:
A system, method and article of manufacture are provided for decomposing surfaces using guard curves for rendering purposes during computer graphics processing. Initially, a patch is received. Thereafter, a plurality of strip curves associated with the patch is defined in a first predetermined direction. As such, areas are defined by the strip curves which are adapted for being decomposed into a plurality of primitives. Next, at least one guard curve associated with the patch is generated. The guard curve is positioned along ends of the strip curves and in a second predetermined direction perpendicular with respect to the first predetermined direction.
摘要:
A system, method and article of manufacture are provided for decomposing surfaces for rendering purposes during computer graphics processing. Initially, an interior mesh of primitives is defined in a surface to be rendered. Next, a plurality of surrounding meshes is defined along sides of the interior mesh. The exterior sides of the surrounding meshes each include a plurality of equally sized segments and at least one fractional segment that is a fraction of the equally sized segments. With this configuration, a pattern of triangles is used that permits the number of triangles to be varied continuously from frame to frame while accommodating incremental evaluation techniques such as forward differencing without visual artifacts such as popping.