Abstract:
A converter which converts first AC power input from an external power system to DC power, a storage device charged with the DC power from the converter, an inverter which converts DC power from the storage device to second AC power, an output AC power generating unit to which the first AC power and the second AC power are input, the unit which generates output AC power, and a controller which obtains external power information indicating a relationship between a power supply and a power demand in the external power system through a network and outputs a control signal to control the output AC power generating unit according to the external power information are provided. The controller controls the output AC power generating unit according to a state of a margin of the power supply.
Abstract:
Provided is an engine starting device, including: starter control means for causing, when the restart condition is established during a period in which a meshing inhibition condition for a ring gear and a pinion gear is established, the pinion gear and the ring gear to mesh with each other after the meshing inhibition condition is released, thereby restarting the engine. The starter control means determines the meshing permission condition and the meshing inhibition condition based on at least an engine rotation speed, and determines the release of the meshing inhibition condition before the engine completely stops based on at least one of the engine rotation speed and an elapsed time after the establishment of the meshing inhibition condition.
Abstract:
The present invention involves retrieving edges that do not constitute a designated network model which is a network model designated by a user and are linked to nodes that constitute the designated network model, displaying retrieval results that include the retrieved edges and network model IDs corresponding to the edges in a selectable manner, and generating an integrated network model in which, when the retrieval results are selected by the user, the edges that are included in the selected retrieval results and the nodes that do not constitute the designated network model and are linked to the edges, are integrated into the designated network model.
Abstract:
The invention provides an information retrieval apparatus and an information retrieval method by which information can be retrieved in an improved operability. A CPU controls a video camera to fetch an image and controls a GPS to detect a current position. The CPU reads out, from within image data stored in a corresponding relationship with URLs of WWW servers, those image data which correspond to position data regarding positions around the detected current position from a WWW data base via a modem and a host machine. Then, the CPU selects, from among the read out image data, that image data which matches with the fetched data, reads out a URL corresponding to the image data and accesses a WWW server designated by the URL.
Abstract:
A smooth portion is efficiently extracted from an image. There is provided an entropy filter in which a noted pixel (x, y) is determined in an original image, said image is partitioned by a window of size (width, height)=(A, B) from the noted pixel, entropy of the partitioned window is calculated, and obtained entropy value is saved on the coordinates (x, y) of a resulting image. Here, in a noted pixel (x, y), x is ranged from 0 to (an image width minus a window width) and y is ranged from 0 to (an image height minus a window height). By using an entropy filter, a smooth portion in image quality is extracted from an original image. A preferred example of the smooth portion is a cell nucleus.
Abstract:
An apparatus according to this invention allows a user to set at least one of desired metabolic circuit information, environmental factor information, and end condition information, changes all of nodes and edges included in the metabolic circuit information or either the nodes or the edges based on at least one of the metabolic circuit information set by simulation condition setting and the environmental factor information until the end condition information set by the simulation condition setting is satisfied, executes a metabolic simulation by a metabolic flux balance analysis, and outputs a result of the simulation executed by simulation execution.
Abstract:
A walk controller (30) for a biped (two-footed) walking mobile system, which drive-controls each joint drive motor (15L, 15R–20L, 20R) of each leg portion (13L, 13R) of a biped walking mobile system based on gait data, includes a force detector (23L, 23R) to detect the force allied to a sole of each foot portion (14L, 14R), and a compensator (32) to modify the gait data from a gait former (24) based on the force detected by a force detector, and is constituted so that each force detector (23L, 23R) comprises at least three 3-axial force sensors (36a, 36b, 36c) allocated on a sole of each foot portion (14L, 14R), and a compensator (32) modifies gait data based on the detected signals from three 3-axial force sensors (36a, 36b, 36c) which detect effective force, thereby the walk stability of a robot is realized, even on the unstable road surface condition with complex roughness.
Abstract:
A robot visuoauditory system that makes it possible to process data in real time to track vision and audition for an object, that can integrate visual and auditory information on an object to permit the object to be kept tracked without fail and that makes it possible to process the information in real time to keep tracking the object both visually and auditorily and visualize the real-time processing is disclosed. In the system, the audition module (20) in response to sound signals from microphones extracts pitches therefrom, separate their sound sources from each other and locate sound sources such as to identify a sound source as at least one speaker, thereby extracting an auditory event (28) for each object speaker. The vision module (30) on the basis of an image taken by a camera identifies by face, and locate, each such speaker, thereby extracting a visual event (39) therefor. The motor control module (40) for turning the robot horizontally. extracts a motor event (49) from a rotary position of the motor. The association module (60) for controlling these modules forms from the auditory, visual and motor control events an auditory stream (65) and a visual stream (66) and then associates these streams with each other to form an association stream (67). The attention control module (6) effects attention control designed to make a plan of the course in which to control the drive motor, e.g., upon locating the sound source for the auditory event and locating the face for the visual event, thereby determining the direction in which each speaker lies. The system also includes a display (27, 37, 48, 68) for displaying at least a portion of auditory, visual and motor information. The attention control module (64) servo-controls the robot on the basis of the association stream or streams.
Abstract:
Disclosed is a biped walking mobile system which achieves stability without altering a preestablished gait, and a walk controller and control method therefor. The biped walking mobile apparatus includes a gait former for forming gait data and a walk controller for controlling actions of the drive means based on the gait data. The walk controller includes a ZMP compensator, including: a ZMP sensor, a ZMP converter for computing a ZMP target value based on the gait data from the gait former, and a ZMP compensating stage for comparing the actual measurement value of ZMP detected by the ZMP sensor with the ZMP target value from the ZMP converter to modify the targeted angular velocity and acceleration in the gait data and thereby to compensate or correct the ZMP target value. Thus, the targeted angular path of movement in the gait data remains unaltered when the ZMP target value is compensated.
Abstract:
A walk controller (30) to drive-control drive means of respective joint portions (15L, 15R to 20L, 20R) of respective leg portions (13L, 13R) based on gait data comprises force sensors (23L, 23R) to detect forces applied to the soles of respective foot portions (14L, 14R), and a compensation part (32) to adjust the gait data from a gait forming part (24) based on horizontal floor reaction force among the forces detected by the force sensors, respective force sensor parts (23L, 23R) comprises 3-axis force sensors (36a to 36d) provided to respective parts of soles divided into a plurality at respective foot portions (14L, 14R), a contact detection part (32b) detects a contact of foot sides by the force sensors provided to regions next to end edges of respective soles, and the compensation part (32) adjusts the gait data from the gait forming part (24) referring to the contact of foot sides, and thereby the contact of foot sides to such a matter as an obstacle is detected, and a walk stability is realized.