Abstract:
The present disclosure relates to passive optical network (PON) systems, optical line terminals (OTLs), and optical network units (ONUs). One example PON system includes an OLT and at least two ONUs. The OLT and the ONUs exchange data on one downstream channel and two upstream channels. The OLT sends downstream data to each ONU on the downstream channel, where the downstream data includes an upstream bandwidth grant used to control each ONU to send upstream data. Each ONU receives the downstream data on the downstream channel, and sends the upstream data on a first upstream channel or a second upstream channel based on the upstream bandwidth grant included in the downstream data. The OLT receives, on the first upstream channel and the second upstream channel, the upstream data sent by each ONU, where a registration function is disabled on the first upstream channel, and enabled on the second upstream channel.
Abstract:
Embodiments provide an uplink signal acknowledge method. In the method, an uplink signal sent by a terminal device for tracking the terminal device can be received by a base station or a transmission/reception point (TRP). A downlink tracking acknowledge message can be sent to the terminal device. The downlink tracking acknowledge message can include at least one of the following: information about a status in which the base station or the TRP tracks the terminal device, timing advance information required by the terminal device to send an uplink tracking signal, power adjustment information required by the terminal device to send the uplink signal, and access control information of the terminal device. The base station or the TRP sends the downlink tracking acknowledge message to the terminal device, so that the terminal device learns whether a network has tracked the terminal device.
Abstract:
Embodiments of this application provide a resource management indication method and apparatus. The method includes: generating, by a base station, radio resource management RRM measurement manner indication information, where the RRM measurement manner indication information is used to indicate an RRM measurement manner; and sending, by the base station, the RRM measurement manner indication information to a terminal. In the embodiments of this application, the base station can flexibly indicate the RRM measurement manner to the terminal, so that a more proper RRM measurement manner is used, to improve measurement efficiency and reduce measurement overheads.
Abstract:
The method includes: receiving, by a second transmit end, policy information sent by a first transmit end, where the second transmit end belongs to a second BSS, the first transmit end is a transmit end that is in a first basis service set and that transmits data by using a first link, and the policy information is used to indicate a condition that the second transmit end needs to satisfy to transmit data by using a second link, or used to indicate whether the second transmit end is allowed to transmit data by using a second link; and determining, by the second transmit end based on the policy information, whether to transmit data by using the second link. According to the wireless communication method, a spatial reuse transmission policy can be adjusted dynamically based on an actual situation of a current network. This improves a system throughput.
Abstract:
The present disclosure provides a NAV (network allocation vector) setting method in a wireless communications system and a related device. The method includes: receiving, by a receiving node, a PPDU (physical layer protocol data unit) sent by a transmitting node; determining whether the receiving node satisfies a condition of allowing simultaneous transmission; and if the condition of allowing simultaneous transmission is satisfied, keeping a current NAV value unchanged; or if the condition of allowing simultaneous transmission is not satisfied, decoding the received PPDU to obtain a duration field, and updating the current NAV value of the receiving node according to a value of the duration field.
Abstract:
The present invention provides a WLAN system resource indication method and apparatus. The method includes: generating, by an access point, a frame that carries resource indication information; and sending, to multiple stations, the frame that carries the resource indication information. The resource indication information includes multiple pieces of sub resource indication information. Correspondingly, each piece of the sub resource indication information uniquely corresponds to one of the multiple stations. Therefore, a station side does not need read the entire resource indication information, so as to reduce resource overheads and improve efficiency.
Abstract:
A resource indication processing method, which is applied to a wireless local area network that uses an OFDMA technology, where the method includes sending or receiving a frame including a resource indication field, where the resource indication field includes an identifier of a user, and resource block information and modulation and coding scheme MCS information that are corresponding to the identifier of the user.
Abstract:
Embodiments of the present invention relate to the communications field, and provide a multicast sending apparatus, a multicast receiving apparatus, and a multicast transmission determining method. The method includes: sending at least one multicast frame to multiple stations in a multicast manner; generating a multicast indication request frame, where the multicast request indication frame includes an identifier of the at least one multicast frame, the multicast indication request frame is used to instruct the multiple stations to send an indication frame within a specified timeslot in a unicast and contention-based manner, and the indication frame includes an identifier of a to-be-retransmitted multicast frame; and sending the multicast indication request frame to the multiple stations in a multicast manner.
Abstract:
The present invention discloses an optical line transmission protection system and method. In which, the optical line transmission protection system includes: at least one stage of optical line protection segment having a transmitting end provided with a Tunable Optical Divide Module (TOD), and a receiving end provided with an OSW; the transmitting end of a local Optical Line Protector (OLP) is connected to the receiving end of an opposite OLP to form main and standby optical lines; and the TOD is configured to set splitting ratios of the main and standby optical lines according to a difference between the optical fiber states of the current working channel and non-working channel, and tune optical power distributions at respective transmitting ends of the main and standby optical lines, according to the splitting ratios of the main and standby optical lines.