Abstract:
A code division multiple access base station is used in receiving a plurality of data signals over a shared spectrum. Each received data signal experiences a similar channel response. A combined signal of the received data signals is received over a shared spectrum. The combined signal is sampled at a multiple of the chip rate. A channel response is estimated. A first element of a spread data vector is determined using the combined signal samples and the estimated channel response. A factor from the first element determination is used to determine remaining elements of the spread data vector. Data of the data signals is estimated using the determined elements of the spread data vector.
Abstract:
A code division multiple access base station is used in receiving a plurality of data signals over a shared spectrum. Each received data signal experiences a similar channel response. A combined signal of the received data signals is received over the shared spectrum. The combined signal is sampled at a multiple of the chip rate. A channel response is estimated at the multiple of the chip rate. The multiple chip rate estimated channel response is combined as an effective chip rate channel response. A spread data vector is determined using the effective samples, the effective channel response and a fourier transform. Data of the data signals is estimated using the spread data vector.
Abstract:
A code division multiple access user equipment is used in receiving a plurality of data signals over a shared spectrum. Each received data signal experiences a similar channel response. A combined signal of the received data signals is received over the shared spectrum. The combined signal is sampled at a multiple of the chip rate. A channel response is estimated. A cross correlation matrix is determined using the estimated channel response. A subblock of the cross correlation matrix is selected. A Cholesky factor for the subblock is determined. The Cholesky factor is extended. The spread data vector is determined using the extended Cholesky factor, a version of the channel response and the samples. Data of the data signals is estimated using the spread data vector.
Abstract:
Outer loop/weighted open loop power control method controls transmission power levels in a spread spectrum time division duplex communication base station. The base station receives a communication including a transmitted power level and measures its received power level. Based in part on the measured power level and the transmitted power level, a path loss estimate is determined. A quality of the path loss estimate is also determined. The transmission power level for a communication from the base station is based in part on weighting the path loss estimate in response to the estimate's quality.
Abstract:
Outer loop/weighted open loop power control apparatus controls transmission power levels in a spread spectrum time division duplex communication user equipment (UE). The user equipment receives a communication including an transmitted power level and measures its received power level. Based in part on the measured power level and the transmitted power level, a path loss estimate is determined. A quality of the path loss estimate is also determined. The transmission power level for a communication from the user equipment is based on in part weighting the path loss estimate in response to the estimate's quality.
Abstract:
The present invention is an apparatus for a user equipment (UE) to transmit a data field of symbols. A first data field of symbols is generated and encoded d to produce a second data field having complex conjugates of the symbols of the data field. The first and second data fields are then spread, wherein the first data field is spread using a first channelization code and the second data field is spread using a second channelization code. Each of the channelization codes are uniquely associated with one of a first and second antenna. An RF signal including the first and second spread data fields is then transmitted over a first and second antenna.
Abstract:
A plurality of signals are received in a shared spectrum. Samples of the received user signals are produced as a received vector. The received vector is segmented into a plurality of segments. For each segment, successively determining symbols for each user or group of signals (the group of signals having similar received power) by determining symbols for one user/group and removing a contribution of that one user/group from the received vector. The determined symbols corresponding to each segment are assembled into a data vector.
Abstract:
A first detector receives a received signal and extracts the data signals from the received signal. A hard decision converter converts soft symbols outputted by the first detector into hard symbols. An interference canceller extracts the voice signals from the received signal. A second detector is connected to the output of the interference canceller, and extracts the individual voice signals. The second detector is a different detector type than the first detector.
Abstract:
A plurality of communication signals have differing spreading codes. Each communication has an associated code comprising chips. For each chip of each communication, a vector of that chip convolved with an impulse response is produced. For each communication, support blocks comprising the chip vectors are produced. A number of the chip vectors in a support block is based on that communication's spreading factor. A system response matrix is assembled. The system response matrix has symbol sub-matrices. Each symbol sub-matrix comprises a support block from each communication. Data of the communications is detected using the symbol response matrix.
Abstract:
A transmission power level for a user equipment in a wireless time division duplex communication system using code division multiple access is determined. An interference level is measured. A pathloss estimate is determined. A long term average of pathloss estimates is determined. A first weighting factor, null, is determined by the determined pathloss estimate, producing a weighted pathloss estimate. (1nullnull) is multiplied to the determined long term average of pathloss estimates, producing a weighted long term pathloss estimate. A target signal to interference ratio is provided. The target signal to interference ratio is updated using outer loop power commands. A transmission power level of the user equipment is determined by adding the weighted pathloss estimate to the weighted long term pathloss estimate to the measured interference level to the updated target signal to interference ratio to a constant value.