Abstract:
A method, components and a system are provided for implementing power control for wireless communication transmissions that provides, inter alia, a remedy for the mismatch of initial transmission power for NRT data by estimating a bias error based and adjusting the transmission power by a compensation amount for an averaged bias error estimation over all data set transmissions, such as sequential Temp-DCH allocations in a UMTS system. An alternative approach for a UMTS system estimates the bias error at a RNC based on an averaged transmit code power measurement by a base station and applies a bias error compensation to the initial DL transmit power at the RNC.
Abstract:
A method and apparatus for performing signal-to-interference ratio (SIR) estimation in wireless communications, using a demodulator output, such as a Rake output or a multi-user detection (MUD) receiver output. The demodulator output is fed into a SIR estimator to perform the SIR estimation based on estimated average signal power and estimated average effective interference power. The estimated average signal power is based on a minimum value function used for determining a minimum value between a median based average power value and a mean based average power value. The SIR estimator reduces bias effects on SIR estimation, and is applicable to BPSK and QPSK modulation schemes, as well as higher order modulation schemes such as 8-PSK and 16-QAM. A correction term is used as a function of the mean and median values to further mitigate the bias effect.
Abstract:
A stopping rule for Turbo decoding that is applied for both good and bad code blocks is disclosed. If the iteration either converges or diverges, decoding is terminated. In an alternative embodiment, the result of the stopping rule testing may be used for H-ARQ acknowledgement generation: if the iteration converges, an ACK is generated and if the iteration diverges, a NACK is generated. Optionally, the maximum number of decoding iterations may be dynamically selected based on MCS levels.
Abstract:
A method for determining uplink power requirements for a transceiver in a wireless communication system includes obtaining measurements from a beacon signal occupying a first timeslot in a frame; obtaining measurements from at least one additional channel having a known transmitted signal strength and occupying a second timeslot in the frame; and utilizing the measurements to determine a path loss estimate.
Abstract:
A wireless communication system is configured to monitor transmission sequence numbers (TSNs) assigned to protocol data units (PDUs) processed by the system. The system includes at least one user equipment (UE) having, a queue, and a Node B in communication with the UE. The UE determines that a data block having an expected TSN was not received, and generates a TSN status report message. The Node B retransmits a data block including the expected TSN to the UE in response to the TSN status report message. The retransmitted data block is placed in a specific location in the queue designated by the TSN status report message.
Abstract:
A code is produce for use in scrambling or descrambling data associated with a high speed shared control channel (HS-SSCH) for a particular user equipment. A user identification of the particular user equipment comprises L bits. A null rate convolutional encoder processes at least the bits of the user identification by a null rate convolutional code to produce the code.
Abstract:
A method of the employing weighted open loop power control in a user equipment (UE) is initiated by the UE receiving a communication and measuring its received power level. Based on, in part, the received communication's power level and the communication's transmission power level, a path loss estimate is determined. A quality of the path loss estimate is also determined. The transmission power level for a communication from the UE is based, in part, on weighting the path loss estimate in response to the quality of the estimate.
Abstract:
A user equipment (UE) employs weighted open loop power control by receiving a communication and measuring its received power level. Based on, in part, the received communication's power level and the communication's transmission power level, a path loss estimate is determined. A quality of the path loss estimate is also determined. The transmission power level for a communication from the UE is based, in part, on weighting the path loss estimate in response to the estimate's quality.
Abstract:
A code is produce for use in scrambling or descrambling data associated with a high speed shared control channel (HS-SSCH) for a particular user equipment. A user identification of the particular user equipment comprises L bits. A null rate convolutional encoder processes at least the bits of the user identification by a null rate convolutional code to produce the code.
Abstract:
A transmission power level for a user equipment in a wireless time division duplex communication system using code division multiple access is determined. An interference level is measured. A pathloss estimate is determined. A long term average of pathloss estimates is determined. A first weighting factor, null, is determined by the determined pathloss estimate, producing a weighted pathloss estimate. (1nullnull) is multiplied to the determined long term average of pathloss estimates, producing a weighted long term pathloss estimate. A target signal to interference ratio is provided. The target signal to interference ratio is updated using outer loop power commands. A transmission power level of the user equipment is determined by adding the weighted pathloss estimate to the weighted long term pathloss estimate to the measured interference level to the updated target signal to interference ratio to a constant value.