摘要:
A method and system generating signal to select a subset of antennas from a set of antennas to transmit user data in a wireless communication system. User data are transmitted during a first transmission time intervals (TTI) using a first subset of antennas. Pilot tones are transmitted during a second TTI using a second subset of antennas. Corresponding channels are estimated for the first subset of antennas and the second subset of antennas from the user data and the pilot tones. Then, based on the estimating, an optimal subset of antenna is selected from the first subset of antennas and the second subset of antennas to transmit the user data during a sequent TTI, and in which the selecting is performed adaptively.
摘要:
A dynamic voltage scaling system for a packet-based data communication transceiver includes a constant voltage supply, a variable voltage supply, and a voltage control unit. The constant voltage supply is configured to supply a constant voltage to at least one parameter-independent function of the transceiver, and the variable voltage supply is configured to supply a variable voltage in accordance with a control signal to at least one parameter-dependent function of the transceiver. Parameter-independent transceiver functions perform operations independent of a predetermined parameter and parameter-dependent transceiver functions perform operations dependent on the predetermined parameter The voltage control unit is configured to generate the control signal based on information provided by at least one parameter-independent transceiver function about the predetermined parameter.
摘要:
Embodiments of the invention describe a method for antenna selection (AS) in a wireless communication network, the network comprising user equipment (UE), wherein the UE comprises a plurality of subsets of antennas including a selected subset of antennas and an unselected subset of antennas, wherein only the selected subset of antennas is used for transmitting user data, and wherein the UE is configured to transmit only from a subset of antennas at a time. The method transmits the user data from the selected subset of antennas within a set of subframes, and transmits a sounding reference signal (SRS) from the unselected subset of antennas within at least one subframe in the set of subframes to enable antenna selection for user data transmission.
摘要:
A method estimates a wireless channel at a receiver. The signal is transmitted using narrowband orthogonal frequency division demultiplexing (OFDM) and frequency subcarriers, and the signal includes a set of data tones and a set of pilot tones. The channel and pilot tone interference are estimated based on all the pilot tones extracted from the signal and a channel model. The set of data are equalized based on the channel estimate. Data interference is detected according to the pilot interference and the equalized data tones. Subcarrier interference-to-noise ratios are determined based on the data interference. Signal strengths of the data tones are determined based on the equalized data tones, log-likelihood ratios of bits represented by the data tones are determined based on the subcarrier interference-to-noise ratios and the signal strength of the data tones.
摘要:
A transmitter encodes an input bitstream using space-time trellis coding (STTC). The encoder includes a serial to parallel convertor to produce a first and second output bitstreams. First and second three bit shift registers are connected to produce first and second output bitstreams. A multiplier applies a code generating weight to each bit of the shift registers to encode the bitstreams. A first switch is connected between a last bit of the first shift register and a first bit of the second shift register. A second switch is connected between the second output and the first bit of the second shift register. The first set of encoded bit streams and the second set of encoded bitstreams are combined and mapped to a frequency domain.
摘要:
The embodiments of the invention provide a method for selecting antennas for date transmission in a wireless communication network including user equipment (UE). The network is assigned a band of frequencies, wherein the band is partitioned into at least one set of subbands of the band according to a sounding reference signal (SRS) band-width configuration in a form of a code-tree having a plurality levels and each level is associated with a partition coefficient. The UE is configured to transmit frequency-hopped SRS on the set of sub-bands using subsets of the set of antennas. First, the method determines if a number of subbands in the set of the sub-bands is odd or even based on the SRS bandwidth configuration, and selects a particular subset of the antennas according to whether the number is odd or even. Then, the SRS is transmitted from the particular subset of the antennas.
摘要:
Beams are used to communicate in a wireless network including mobile and stationary receivers. The network operates according to the IEEE 802.11p in wireless access to vehicular environments (WAVE). A direction from the mobile transceiver to the stationary receiver is predicted using geographic information available to the mobile transceiver. A set of signals are received in the mobile transceiver from the stationary transceiver, wherein the signals are received by an array of antennas, and wherein the signals are received using a set of beams, and wherein each beam is approximately directed at the stationary receiver. A signal-to-noise ratio (SNR) is measured for each beam, and the beam with an optimal SNR is selected as an optimal beam for communicating data between the mobile transceiver and the stationary transceiver.
摘要:
Embodiments of the invention disclose a system and a method for determining a rank of a node in a multi-hop wireless network, wherein the network includes a gateway node, client nodes, and relay nodes, wherein a node p(i) is a default parent of the node i having a rank, and the network uses a directed acyclic graph (DAG) topology. The method comprises steps of transmitting at least one data packet from the node to the default parent node over a wireless link; counting a number of successful transmissions of most recent transmissions of data packets; determining an expected transmission time (ETX) for the wireless link based on the number of successful transmissions in the most recent transmissions; and assigning a rank R(i) to the node based on the rank of the parent node and the ETX.
摘要:
A wireless sensor network includes an initial set of anchors at known locations, and a set of sensors at unknown locations. Ranges, from each sensor to at least three of the anchors, determine a position, an anchor ranging weight, and an anchor position weight. For each anchor, the anchor ranging weight and the anchor position weight form a combined weight. A weighted least square (WLS) function for the positions and the combined weights is minimized to determine a position of the sensor, and a sensor position weight. The sensor is identified as being a member of a set of candidate anchor nodes, and the candidate anchor node with a largest sensor position weight is selected to be transformed to another anchor to minimize propagation of errors in the positions of the set of sensors.
摘要:
A method allocates radio channel resources in an orthogonal frequency-division multiple access network including a set of base stations (BS) and a set of mobile stations (MS). For each BS, a diversity set is maintained for the sets of MS. Each BS determines possible interference at the MS based on the diversity set. A graph is constructed, in which nodes represent the sets of MS, mid each edge between a pair of nodes represents channel interference between the MS represented by the pair of nodes. A weight is assigned to each edge, which reflects interference between the two MSs connected by the edge. The interference graph is partitioned into non-overlapping clusters of nodes based on a structure of the interference graph, the potential interference, so that a sum of the weights of the edges between each cluster is maximized. Based upon the graph partitioning, the channel resources are allocated to the mobile stations in order to maximize the system capacity.