Abstract:
A method is provided for automatically or manually. optimizing independent ground travel operation in an aircraft equipped with one or more self-propelled nose or main wheels powered by a driver means, wherein selected operating parameters indicative of optimized ground travel are monitored by sensors or detectors to provide data and information relating to the selected parameters during operation of the ground travel system. Selected operating parameters can include, for example, speed, direction of travel, torque, component thermal data aircraft location data, and operator inputs, commands, and feedback, as well as other operational data or information. Data is collected, recorded, and analyzed to enable changes to be made to the ground travel system components in real time automatically by intelligent software or manually by a system operator or at a later time to ensure optimum operation of the system.
Abstract:
A high phase order induction machine wound and permitted by coil symmetry to operate at fewer than the magnetically optimal number of poles is constrained by symmetry to be a two pole machine and be capable of operating on odd harmonics only, but with back-iron, end rings, and rotor core optimized for 10 pole operation, might be used normally in ‘5th harmonic’ mode, with ‘7th harmonic’ utilized to engage the ‘mesh effect’. Such a machine thus appears to be operating in the ‘1.4 harmonic’. A high phase order induction machine driven by a second harmonic drive, in which a symmetry imposed by full span windings is broken. This may be most simply accomplished through the use of short pitch windings. Other possible approaches include using non-wound slot drive, and using toroidal windings which localize coils to individual slots.
Abstract:
An integral motor and wheel assembly for aircraft landing gear is provided that includes an electric motor packaged within at least one gear wheel and configured to fit completely within the space provided in an existing aircraft for the landing gear components. The motor is positioned within the wheel to minimize the spin-up weight and to maximize the space within a given volume allocated for the motor. Installation of this motor and gear wheel assembly in an existing aircraft landing gear is designed to permit the continued use of existing landing gear components, including tires, axles, and pistons, so that the assembly can be easily retrofitted into existing aircraft.
Abstract:
A wheel design is provided for an aircraft landing gear wheel that is configured to maximize the space available within a landing gear wheel well to support a geared motor assembly that drives the aircraft wheel when the aircraft is on the ground. The wheel includes inboard and outboard support walls that are spaced apart a selected distance along the wheel axle so that the geared motor assembly components are substantially completely contained within the wheel space defined by the support walls. The preferred motor driver assembly includes an electric motor and a gear and clutch assembly operatively connected to the wheel to drive the wheel and move the aircraft on the ground. The wheel and motor driver assembly described herein may be retrofitted in an existing aircraft wheel without changing existing landing gear components, including tires, piston, and axle.
Abstract:
This application describes a motor designed to operate as a reluctance machine at low speeds and as an induction machine at high speeds. The drive waveform is composed of one or more harmonics to be used to match the reluctance pattern of the stator-rotor, causing the rotor to rotate due to the reluctance effect, and one or more other harmonics to induce current in the rotor, causing the rotor to rotate due to the induction effect and the subsequent interaction of the stator and rotor magnetic fields. The two effects are generally not applied simultaneously.
Abstract:
The present invention is a compound planetary gear system which has a moveable sun gear and a lockable sun gear to change the gear ratio between a high gear ratio and a pseudo 1:1 slipping ratio. The system makes use of a ratchet and pawl mechanism to provide a safety backup for when the lockable sun gear is locked. The invention may be used to move the aircraft from a stationary position, for taxiing, and for pre-rotating the wheels prior to landing.
Abstract:
The present invention comprises an input drive system, which provides a plurality of phases of oscillating fluid flow, and an output drive system connected directly to the input drive system that is powered by the plurality of phases of oscillating fluid flow. The input drive system comprises a plurality of pistons that are caused to move in a reciprocating fashion by a power source. The power source may be a rotating power source, such as that provided by an electric motor, a diesel or petrol engine, or a turbine system. The input drive system comprises a cam ring attached to a rotating power source; a plurality of cam rollers in contact with the cam ring; and a plurality of pistons attached to the cam rings. The output drive system comprises one or more pistons that are caused to move in a reciprocating fashion by the oscillating fluid flow provided by the input drive system. The output drive system comprises a cam ring attached to a load; a plurality of cam rollers in contact with the cam ring; and a plurality of pistons attached to the cam rings.
Abstract:
In the present invention, several polyphase devices are connected together: an inverter, and electrical rotating machine, and a resistive load or braking resistor. The purpose of the resistive load is to dissipate excess electrical power which may be produced when the inverter acts to slow down the rotating machine, causing the rotating machine to act as a generator. In common art, this resistive load is a single DC resistor coupled to the DC link of the inverter via a separate resistor control transistor. In the present invention, the resistive load is a mesh connected array of resistors, and is electrically connected to the same inverter output terminals that the rotating machine is connected to. When it is desired that the resistors absorb energy, for example from a braking operation, then the harmonic content of the inverter output is adjusted, thus placing voltage differences across the resistor array and causing current to flow in the resistors.
Abstract:
An electrical rotating apparatus is provided that has variable impedance. This is achieved by connecting one of the polyphase components of the apparatus in a mesh connection. The spanning value, L, of such a mesh connection may be varied by changing the harmonic content supplied by an inverter component. Also provided is a method for connecting an inverter to a motor, wherein a switching arrangement permits the simple alteration between various mesh connections of different span value, changing thereby the Volts/Hertz ratio of the motor.
Abstract:
A method is disclosed for the induction of a suitable band gap and electron emissive properties into a substance, in which the substrate is provided with a surface structure corresponding to the interference of electron waves. Lithographic or similar techniques are used, either directly onto a metal mounted on the substrate, or onto a mold which then is used to impress the metal. In a preferred embodiment, a trench or series of nano-sized trenches are formed in the metal.