摘要:
A software transactional memory system is provided that generates and stores compressed transactional locks in a portion of object headers. The software transactional memory system allocates preferred write log memory with a predefined size of memory that corresponds to a number of bits in the compressed transactional locks. The compressed transactional locks identify write log entries in corresponding write logs in the preferred write log memory. If the preferred write log memory becomes full, additional write log memory is allocated for write log entries and subsequent transactional locks are stored uncompressed in an auxiliary memory. A pointer that may be used to locate the uncompressed transactional lock is stored in the header. If an object header with a compressed transactional lock is needed for another use, the compressed transactional lock is uncompressed and stored in the auxiliary memory. A pointer that may be used to locate the uncompressed transactional lock is stored in the header.
摘要:
Various technologies and techniques are disclosed for providing type stability techniques to enhance contention management. A reference counting mechanism is provided that enables transactions to safely examine states of other transactions. Contention management is facilitated using the reference counting mechanism. When a conflict is detected between two transactions, owning transaction information is obtained. A reference count of the owning transaction is incremented. The system ensures that the correct transaction was incremented. If the owning transaction is still a conflicting transaction, then a contention management decision is made to determine proper resolution. When the decision is made, the reference count on the owning transaction is decremented by the conflicting transaction. When each transaction completes, the reference counts it holds to itself is decremented. Data structures cannot be deallocated until their reference count is zero. Dedicated type-stable allocation pools can be reduced using an unstable attribute.
摘要:
Various technologies and techniques are disclosed for providing type stability techniques to enhance contention management. A reference counting mechanism is provided that enables transactions to safely examine states of other transactions. Contention management is facilitated using the reference counting mechanism. When a conflict is detected between two transactions, owning transaction information is obtained. A reference count of the owning transaction is incremented. The system ensures that the correct transaction was incremented. If the owning transaction is still a conflicting transaction, then a contention management decision is made to determine proper resolution. When the decision is made, the reference count on the owning transaction is decremented by the conflicting transaction. When each transaction completes, the reference counts it holds to itself is decremented. Data structures cannot be deallocated until their reference count is zero. Dedicated type-stable allocation pools can be reduced using an unstable attribute.
摘要:
Various technologies and techniques are disclosed for detecting falsely doomed parent transactions of nested children in transactional memory systems. When rolling back nested transactions, a release count is tracked each time that a write lock is released due to rollback for a given nested transaction. For example, a write abort compensation map can be used to track the release count for each nested transaction. The number of times the nested transactions releases a write lock is recorded in their respective write abort compensation map. The release counts can be used during a validation of a parent transaction to determine if a failed optimistic read is really valid. If an aggregated release count for the nested children transactions accounts for the difference in version numbers exactly, then the optimistic read is valid.
摘要:
Various technologies and techniques are disclosed for implementing retrying transactions in a transactional memory system. The system allows a transaction to execute a retry operation. The system registers for waits on every read in a read set of the retrying transaction. The retrying transaction waits for notification that something in the read set has changed. A transaction knows if notification is required in one of two ways. If the transactional memory word contained a waiters bit during write lock acquisition, then during release the transactional memory word is looked up in an object waiters map, and waiting transactions are signaled. If a writing transaction finds a global count of waiting transactions to be greater than zero after releasing write locks, a transaction waiters map is used to determine which waiting transactions need to be signaled. In each case, the write lock is released using a normal store operation.
摘要:
Various technologies and techniques are disclosed for handling exceptions in sequential statements that are executed in parallel. A transactional memory system is provided with a contention manager. The contention manager is responsible for managing exceptions that occur within statements that were designed to be executed in an original sequential order, and that were transformed into ordered transactions for speculative execution in parallel. The contention manager ensures that any exceptions that are thrown from one or more speculatively executed blocks while the statements are being executed speculatively in parallel are handled in the original sequential order.
摘要:
Various technologies and techniques are disclosed for supporting parallel nested transactions in a transactional memory system. Releasing a duplicate write lock for rollback is supported. During rollback processing of a parallel nested transaction, a write log entry is encountered that represents a write lock. If the write lock is a duplicate, a global lock is used to synchronize access to a global versioned write lock map. Optimistic read validation is supported. During validation, if a versioned write lock indicates a sibling conflict, consult information to determine if a parallel nested transaction should be doomed. Write lock acquisition is supported. Upon attempting to acquire a write lock for a parallel nested transaction, a transactional memory word is analyzed to determine if the write lock can be obtained. If the transactional memory word indicates a versioned write lock, retrieve a write log entry pointer from a global versioned write lock map.
摘要:
An application program interface (API) provides a set of functions, including a set of base classes and types that are used in substantially all applications accessing the API, for application developers who build Web applications on Microsoft Corporation's .NET™ platform.
摘要:
An application program interface (API) provides a set of functions, including a set of base classes and types that are used in substantially all applications accessing the API, for application developers who build Web applications on Microsoft Corporation's .NET™ platform.
摘要:
A compiler is provided that determines when the use of software transactional memory (STM) primitives may be optimized with respect to a set of collectively dominating STM primitives. The compiler analysis coordinates the use of variables containing possible shadow copy pointers to allow the analysis to be performed for both direct write and buffered write STM systems. The coordination of the variables containing the possible shadow copy pointers ensures that the results of STM primitives are properly reused. The compiler analysis identifies memory accesses where STM primitives may be eliminated, combined, or substituted for lower overhead STM primitives.