摘要:
Provided is an apparatus for testing the performance of an optical transceiver by referencing various performance clocks provided by an OTU2 signal connection transceiver and an STM-64/OC-192 signal. The apparatus for testing performance of an optical transceiver includes: a transmitter/receiver reference clock selector for selecting one of various transmitter/receiver reference clocks provided by an STM-64/OC-192 connection optical transceiver or an OTN connection optical transceiver; a transmitter test reference clock selection switch for selecting a receiver data synchronous clock provided by the transceivers or the selected transmitter/receiver reference clock as a transmitter test reference clock; and a receiver test reference clock selection switch for selecting a transmitter supervisory clock provided by the transceivers or the selected transmitter/receiver reference clock as a receiver test reference clock.
摘要:
This apparatus of bidirectional optical recirculation loop transmission enables bidirectional transmission system to be tested in the long transmission distance. Unidirectional optical recirculation loop is composed of two optical modulators and one 4-port optical coupler. Bidirectional optical recirculation loop is composed of four optical switches, one 4-port optical coupler and six optical circulators. Two optical circulators at the entrance (simultaneously exit) of the loop enable transmitted (received) signals to be added (dropped). Four optical circulators enable forward (reverse) signal to bypass the optical switch set for reverse (forward) signal in the inner optical loop. Forward (reverse) signal can be transmitted simultaneously with the reverse (forward) signal without interference. Two independent optical recirculation loops exist on the same fiber link in each direction.
摘要:
Provided are an apparatus and method for monitoring optical fibers of a passive optical network system including an optical line termination located in a central office, a remote node that is a local office, and optical network units on the subscriber side. The apparatus respectively allocates monitoring light wavelengths to optical network units such that optical fibers of the respective optical network units can be identified and monitored using the monitoring light wavelengths, combines a monitoring light having various wavelengths and a downward optical signal using the WDM coupler, and analyzes signal waveforms of the monitoring light having various wavelengths reflected from the optical network units, to detect the position of a defect generated on an optical line. Accordingly, it is possible to transmit optical signals and monitor the physical states of the optical fibers of the optical network units.