Abstract:
A touch panel, operated by a magnetic stylus, including: a display panel, having a display plane and an interface plane, the interface plane underlying the display plane; and a sensing assembly, underlying the display panel, having a first conductive layer, a second conductive layer, and a plurality of insulating spacers, the first conductive layer underlying the interface plane, and the insulating spacers being placed between the first conductive layer and the second conductive layer to divide the first conductive layer and the second conductive layer into a plurality of first conductive segments and a plurality of second conductive segments respectively, wherein one of the second conductive segments will be bent upward by a magnetic force to electrically connect with one of the first conductive segments when the magnetic stylus is applied thereto.
Abstract:
An electro-phoretic display and a brightness adjusting method thereof are provided. The method for adjusting a brightness includes steps of: providing a pixel having a first area displaying a white color and a plurality of first particles corresponding to the first area; obtaining an environmental brightness; and controlling only locations of the plurality of first particles in response to the environmental brightness so as to adjust the brightness.
Abstract:
A manufacturing method for flexible display apparatus includes following steps. A carrier frame is formed on a rigid substrate. A flexible substrate is formed on the carrier substrate, wherein a border of the flexible substrate is supported by the carrier frame. A display unit is formed on the flexible substrate. At least a portion of the flexible substrate is separated from the carrier frame. In the manufacturing method, the flexible substrate and the carrier frame can be easily separated.
Abstract:
A flat display apparatus comprises a first display screen and a second display screen. The first display screen is a particle-based display screen, and the second display screen is a liquid-based display screen.
Abstract:
An electrophoretic display apparatus includes a bottom substrate, an electrophoretic layer, a color filter substrate and a spacing layer. The bottom substrate has a drive circuitry layer, and the electrophoretic layer is disposed on the drive circuitry layer of the bottom substrate. The color filter substrate is disposed above the electrophoretic layer, and the spacing layer is disposed between the color filter substrate and the electrophoretic layer. The electrophoretic display apparatus has better display quality. A spacing layer is also provided.
Abstract:
An electronic paper display device includes a first substrate, a plurality of display units and a plurality of light-emitting units. The first substrate includes first base and a plurality of electrodes disposed on the first base. The display units are disposed above the first substrate. The light-emitting units are respectively disposed between the display units and the first base.
Abstract:
An electrophoretic display apparatus includes a bottom substrate, an electrophoretic layer, a color filter substrate and a spacing layer. The bottom substrate has a drive circuitry layer, and the electrophoretic layer is disposed on the drive circuitry layer of the bottom substrate. The color filter substrate is disposed above the electrophoretic layer, and the spacing layer is disposed between the color filter substrate and the electrophoretic layer. The electrophoretic display apparatus has better display quality.
Abstract:
A violin display, installed on a violin, including: a control device, used to output a fingering lines pattern data; and a fingerboard display, installed on the fingerboard of the violin to display an image corresponding to the fingering lines pattern data.
Abstract:
An electrophorises display unit includes a substrate, a first electrode, a first insulation layer, a second electrode and a second insulation layer. The first electrode is disposed on the substrate. The first insulation layer is disposed on the first electrode. The second electrode is disposed on the first insulation layer. The second insulation layer is disposed on the second electrode. Wherein, the second insulation layer has an opening for appearing a part of the second electrode.
Abstract:
A display includes a first substrate, a partition element, a second substrate, a dielectric liquid, a plurality of dielectrophoretic particles and a plurality of electrophoretic particles. The partition element is disposed on the first substrate. The second substrate is disposed on the partition element. The partition element forms at least one accommodating room between the first substrate and the second substrate. The first substrate or the second substrate is adapted to forming an electric field in the accommodating room. The dielectric liquid is disposed in the accommodating room and has a first dielectric constant. The dielectrophoretic particles are dispersed in the dielectric liquid. Each of the dielectrophoretic particles has a first color and a second dielectric constant different from the first one. The electrophoretic particles are dispersed in the dielectric liquid. Each of the electrophoretic particles has a second color different from the first one. Another display is also provided.