摘要:
Method for estimating uncertainty in a physical property model generated by inverting measured geophysical data, for example a resistivity model inferred from electromagnetic field data. The method involves as few as one data inversion (32) coupled with a number of forward simulations (37). Alternative solutions (models) are generated (39) by probing a perturbation space (35) defined from a reduced model space (34), resulting from a principal component decomposition (33) of the inverted model, and selecting some of the larger components. Statistical analysis techniques may be applied (to those alternative solutions remaining after thresholding) to generate quantitative uncertainty estimates (42) applicable to the inverted model (32).
摘要:
Embodiments described herein use stochastic inversion (460) in lower dimensions to form an initial model (458) that is to be used in higher-dimensional gradient-based inversion (466). For example, an initial model may be formed from 1.5-D stochastic inversions, which is then processed (464) to form a 3-D model. Stochastic inversions reduce or avoid local minima and may provide an initial result that is near the global minimum.
摘要:
Method for identifying, determining and correcting source-related phase errors in data from a controlled source electromagnetic survey by using data from ordinary survey receivers, i.e. without benefit of source monitoring data. Abrupt anomalies indicating source malfunctions are identified (71) in the time domain by plotting time intervals between neighboring zero crossings or by zero-lag cross correlation between consecutive bins of receiver data, and the amount of the time error (73) can be determined by performing cross correlation between two bins on either side of an anomaly. In the frequency domain, transmitter anomalies can be identified by looking for discontinuities in plots of phase vs. offset, and the corrective phase shift can be determined by matching the phase on one side of the anomaly to that on the other side. A global time/phase shift (76) can be determined by using phase frequency-scaling behavior at near offsets.
摘要:
The method for suppressing noise in the controlled seismic source electromagnetic survey data based on the frequency content of the noise (51) contained in the data. The invention recognizes that some data variations across bins cannot be attributed to resistivity variations within the earth. This variation across the bins constitutes a model of noise in such surveys, and the invention mitigates noise that obeys this model.
摘要:
A method and apparatus of constructing a signal for a controlled source electromagnetic survey is described. In one embodiment, a method is described that includes determining a first waveform and a second waveform, the first waveform and second waveform related to a combined frequency spectrum and bandwidth associated with a geophysical survey line. Then, a signal is constructed by sequencing the first waveform with the second waveform. This signal may be utilized in a transmitter, which may be pulled by a vessel along the geophysical survey line.
摘要:
A method, apparatus and computer program for improving the signal-to-noise ratio of a signal S(t), S(t) containing Signal and noise, are disclosed. A measurement of S(t) at a frequency-of-interest is obtained. Noise measurements of S(t) at one or more noise frequencies where the Signal portion of S(t) is expected to be small are obtained. The noise at the frequency-of-interest is estimated using the noise measurements at the one or more noise frequencies. The estimated noise is subtracted from the measurement of S(t) at the frequency-of-interest.
摘要:
A method, apparatus and computer program for improving the signal-to-noise ratio of a signal S(t), S(t) containing Signal and noise, are disclosed. A measurement of S(t) at a frequency-of-interest is obtained. Noise measurements of S(t) at one or more noise frequencies where the Signal portion of S(t) is expected to be small are obtained. The noise at the frequency-of-interest is estimated using the noise measurements at the one or more noise frequencies. The estimated noise is subtracted from the measurement of S(t) at the frequency-of-interest.
摘要:
Method for compensating for phase errors in electromagnetic data by exploiting the frequency scaling properties of electromagnetic fields. The data are obtained at various source-receiver offsets. Then, temporal frequency components of the data at each offset R are determined. Next, the phase spectrum (phase vs. offset) for each of the frequency components is determined. Then, the phase spectra for the different frequencies f are displayed vs. scaled offset R√ω, where ω=2πf. Finally, the phase spectra are then adjusted such that the differences in phases for the different frequencies are reduced. The adjustment process can be repeated until phase differences are reduced to an acceptable level.
摘要:
The method for suppressing noise in the controlled seismic source electromagnetic survey data based on the frequency content of the noise (51) contained in the data. The invention recognizes that some data variations across bins cannot be attributed to resistivity variations within the earth. This variation across the bins constitutes a model of noise in such surveys, and the invention mitigates noise that obeys this model.
摘要:
A frequency domain method of processing geophysical data on a computer having massively parallel processors. The method involves assigning data slice partitions to each processor, precomputing a velocity model corresponding to the geophysical data, and migrating the data on each slice within each processor using a one-pass, split wave equation finite difference technique for depth migration and either phase shift or recursive techniques for time migration. A sequence of transforms and transpositions between processors assigned partitions on each frequency slice transforms into the frequency-wavenumber domain and allows the migration calculations to be directly performed by each processor to be independent of each other processor. The transforms and transposes also allow for depth migration error correction and filtering in the frequency-wavenumber domain.