Abstract:
A dual LCD device includes a liquid crystal panel having a liquid crystal layer interposed between a first substrate and a second substrate, first and second polarizing plates attached to opposing surfaces of the liquid crystal panel, a first front light unit attached to a front side of the liquid crystal panel, and a second front light unit attached to a rear side of the liquid crystal panel, and a partial reflector attached to a front surface of the first front light unit.
Abstract:
A multi-domain liquid crystal display device includes first and second substrates facing each other and a liquid crystal layer between the first and second substrates. A plurality of gate bus lines are arranged in a first direction on the first substrate and a plurality of data bus lines are arranged in a second direction on the first substrate to define a pixel region. A pixel electrode is electrically charged through the data bus line in the pixel region. A common-auxiliary electrode surrounds the pixel electrode on a same layer whereon the gate bus line is formed.
Abstract:
An LCD panel and a method for manufacturing the same facilitate more efficient hardening a UV-type hardening sealant suitable for a large size panel. The LCD panel includes first and second substrates, an active region defined on the first substrate and provided with a plurality of TFT's and pixel electrodes, a sealing region defined along a periphery of the active region, a light-shielding region defined on the second substrate other than on the sealing region, and a liquid crystal region between the first and second substrates. The method for manufacturing an LCD panel includes the steps of preparing first and second substrates, forming a plurality of patterns in an active region on the first substrate, forming a UV hardening type sealant along a periphery of the active region, forming a light-shielding layer on the second substrate so as not to shield the sealant, attaching the first and second substrates to each other, and irradiating the sealant with UV-rays to harden the sealant.
Abstract:
The present multi-domain liquid crystal display device includes first and second substrates facing each other; a liquid crystal layer between the first and second substrates; a first dielectric frame on one side of the pixel region; a second dielectric frame on another side of the pixel region; and a third dielectric frame between the first dielectric frame and the second dielectric frame.
Abstract:
A multi-domain liquid crystal display device includes first and second substrates having pixel regions; a liquid crystal layer formed between the first substrate and the second substrate; a plurality of dielectric structures formed on the first substrate at predetermined intervals; and a pixel electrode having a plurality of electric field induction windows formed to alternate with the dielectric structures.
Abstract:
A multi-domain liquid crystal display device comprises first, and second substrates facing each other and a liquid crystal layer between the first and second substrates. A plurality of gate bus lines are arranged in a first direction on the first substrate and a plurality of data bus lines are arranged in a second direction on the first substrate to define a pixel region. A pixel electrode electrically is charged through the data bus line in the pixel region, a color filter layer is formed on the second substrate, and a common electrode is formed on the color filter layer. Dielectric frames are formed in the pixel region, and an alignment layer on at least one substrate between the first and second substrates.
Abstract:
A multi-domain liquid crystal display device includes: first and second substrates opposing each other; a liquid crystal layer formed between the first substrate and the second substrate; a plurality of gate lines and data lines formed on the first substrate lengthwise and crosswise to define pixel regions; a pixel electrode formed in the pixel regions; at least one or more electric field induction windows independently formed in the pixel electrode; a common auxiliary electrode formed on a layer equal to the gate lines to surround the pixel regions; a common electrode formed on the second substrate; at least one or more dielectric structures independently formed on the common electrode to distort electric field applied to the liquid crystal layer; and an alignment film formed on at least one of the first and second substrates.
Abstract:
A multi-domain liquid crystal display device includes first and substrates facing each other and a liquid crystal layer between the first and second substrates. A plurality of gate bus lines are arranged in a first direction on the first substrate and a plurality of data bus lines arranged in a second direction on the first substrate to define a pixel region. A pixel electrode is electrically charged through the data bus line in the pixel region. A common-auxiliary electrode surrounds the pixel electrode on a same layer whereon the gate bus line is formed.
Abstract:
A liquid crystal cell having a first substrate with a rubbed layer provided thereon, a second substrate with a photo-aligned layer provided thereon, and a liquid crystal material provided between the substrates.
Abstract:
A method for fabricating a liquid crystal cell and related device includes providing an alignment layer of a light sensitive material on a substrate; and exposing the alignment layer to unpolarized or partially polarized light, to provide pretilt for the molecules of the alignment layer.