Abstract:
Methods, apparatuses (e.g., DSL system hardware, DSL systems, vectoring control entities), techniques, systems, etc. are used for initializing one or more DSL lines joining a vectored DSL line group operating in Showtime. A super-periodic orthogonal pilot sequence from a set of super-periodic orthogonal pilot sequences is assigned to each joining DSL line, wherein each such super-periodic orthogonal pilot sequence in the set has length L and is orthogonal to other sequences in the set over length T. These super-periodic orthogonal pilot sequences are used on the joining DSL lines to generate at least T sync-symbols worth of initialization data, which is processed to generate initialization data and FEXT mitigation coefficients for use when the joining DSL lines become part of the vectored DSL line group.
Abstract:
Included are embodiments for reducing alien crosstalk. At least one embodiment of a method includes receiving noise data associated with a first user signal on a first tone, receiving noise data associated with a second user signal on the first tone, and receiving at least one alien crosstalk canceller coefficient for the first user on the first tone. Some embodiments include applying the at least one alien crosstalk canceller coefficient to the second user signal to reduce alien crosstalk for the first user signal.
Abstract:
Systems and methods for reducing the peak-to-average ratio (PAR) at the transmitter can reduce the dynamic range required in various analog components. PAR can be reduced by applying a time-domain compensation signal which reduces the magnitude of peaks in the time-domain signal prior to transmission where the time-domain compensation signals use tones that are reserved for the purpose of reducing the PAR. The reservation of these reserved tones for PAR can be implemented by altering the typical startup procedures in a digital subscriber line (xDSL) system. The use of the reserved tones to reduce the PAR can be implemented using a low complexity algorithm or using an adaptive technique.
Abstract:
Included are embodiments for subframe interleaving. At least one embodiment of a method includes receiving at least one subframe, the at least one subframe being derived from a plurality of frames of data and interspersing at least a portion of the at least one subframe according to a predetermined subframe interleaving strategy.
Abstract:
A method is described for reducing self-induced far end crosstalk (self-FEXT) in a multiple input multiple output (MIMO) digital subscriber line (xDSL) system. An initial value for an off-diagonal multiple input multiple output canceller (ODMC) is derived while the ODMC is inactive and while in data mode. The method includes activating the initial ODMC and converging towards an steady-state value for the ODMC by performing an adaptive algorithm to maximize the Shannon's capacity of the system and to reduce upstream self-FEXT. Bit loading is performed and a frequency domain equalizer (FEQ) is updated.
Abstract:
Systems and methods for monitoring impulse noise are described. At least one embodiment is a method, which comprises detecting whether impulse noise is present and in response to detecting the presence of impulse noise, performing time domain analysis to determine whether one or more impulse noise sources are present based on minimum interarrival time and maximum impulse length. The method further includes performing frequency domain analysis to estimate frequencies associated with the one or more impulse noise sources and based on the time domain analysis and frequency domain analysis, providing a total number of impulse noise sources and frequencies associated with the impulse noise sources. In this regard, the embodiments described herein provide dual-speed monitoring of impulse noise in the form of short-term and long-term monitoring. The use of dual-speed monitoring ensures that dynamic changes in the impulse noise environment are quickly addressed and also ensures better characterization of multiple impulse noise sources in order to provide better impulse noise protection.
Abstract:
Systems and methods for performing single-end line testing (SELT) are described. At least one embodiment includes a method for SELT to determine loop characteristics for a loop. The method for performing SELT comprises generating a test signal through a loop to be tested and receiving an echo response. The method further comprises subtracting predetermined near end echo response from the received echo to derive a far end echo response, performing time-dependent scaling on the far end echo response to compensate for loop attenuation, comparing the time-scaled far end echo response to a set of predefined templates, and providing an estimate of loop characteristics by identifying a matching template within the set of predefined templates, wherein the matching template contains information relating to loop characteristics comprising loop length and loop termination.
Abstract:
Methods, apparatuses (e.g., DSL system hardware, DSL systems, vectoring control entities), techniques, systems, etc. are used for initializing one or more DSL lines joining a vectored DSL line group operating in Showtime. A super-periodic orthogonal pilot sequence from a set of super-periodic orthogonal pilot sequences is assigned to each joining DSL line, wherein each such super-periodic orthogonal pilot sequence in the set has length L and is orthogonal to other sequences in the set over length T. These super-periodic orthogonal pilot sequences are used on the joining DSL lines to generate at least T sync-symbols worth of initialization data, which is processed to generate initialization data and FEXT mitigation coefficients for use when the joining DSL lines become part of the vectored DSL line group.
Abstract:
The memory storage, transmission and processing demands of a vectored DSL system are reduced by sampling a subset of DSL tones in the DSL tone range used in the vectored system. This data is smoothed (denoised) to further reduce the data's size, sacrificing some fidelity or precision as a result. Finally, lossless entropy coding or the like is performed to encode the FEXT cancellation data for storage and use. The resulting data is less likely to cause transmission bottlenecks in the vectored system, can be stored and used more efficiently for both on-chip and off-chip vectoring implementations, and can be readily updated in various ways.
Abstract:
Systems and methods for reducing the peak-to-average ratio (PAR) at the transmitter can reduce the dynamic range required in various analog components. PAR can be reduced by applying a time-domain compensation signal which reduces the magnitude of peaks in the time-domain signal prior to transmission where the time-domain compensation signals use tones that are reserved for the purpose of reducing the PAR. The reservation of these reserved tones for PAR can be implemented by altering the typical startup procedures in a digital subscriber line (xDSL) system. The use of the reserved tones to reduce the PAR can be implemented using a low complexity algorithm or using an adaptive technique.