摘要:
An enabling circuit for enabling a DC—DC converter having a capacitor coupled to an output terminal of the DC—DC converter to be controlled by a control signal. The enabling circuit may include a comparison circuit configured to compare a feedback signal representative of a charge on the capacitor with a signal representative of a reference charge and to provide an output to in response to the comparison to enable the DC—DC converter to be controlled by the control signal if the charge on the capacitor is less than the reference charge. The enabling circuit may also include a discharge path configured to discharge the charge on the capacitor if the charge is greater than the reference charge. A related system and method are also provided.
摘要:
A battery pack including at least one battery cell, a switch, and battery state monitoring circuitry. The battery state monitoring circuitry may be configured to control an ON resistance of the switch to a first ON resistance when the switch is ON and the battery pack is in a stand-by-state and to control the ON resistance to a second ON resistance when the switch is ON and said battery pack is not in said stand-by-state, the first ON resistance greater than the second ON resistance. A cordless electrical device and method consistent with embodiments are also provided.
摘要:
A method for efficiently charging a battery. The method includes producing a first signal having a voltage level dependent on the voltage of the battery, comparing the voltage level of the first signal with a settable voltage representative of a maximum battery charging current, and producing a second signal representative of a charging current to be provided to the battery, the second signal having a voltage level selected to be the lower voltage level between the first signal and the settable voltage.
摘要:
A method includes coupling a variable output DC power source to power control circuitry, and detecting a type of the variable output DC power source in response to the coupling operation. In one embodiment, the detecting operation may include sending an interrogation signal from the power control circuitry to the variable output DC power source, and evaluating a response to the interrogation signal to determine the type of said variable output DC power source. Power control circuitry may include source type recognition circuitry configured to detect a type of a variable output DC power source in response to a coupling of the variable output DC power source to the power control circuitry.
摘要:
A method includes coupling a variable output DC power source to power control circuitry, and detecting a type of the variable output DC power source in response to the coupling operation. In one embodiment, the detecting operation may include sending an interrogation signal from the power control circuitry to the variable output DC power source, and evaluating a response to the interrogation signal to determine the type of said variable output DC power source. Power control circuitry may include source type recognition circuitry configured to detect a type of a variable output DC power source in response to a coupling of the variable output DC power source to the power control circuitry.
摘要:
A power supply topology according to one embodiment includes a first path coupled to a controllable DC power source, a second path coupled to a rechargeable battery, and a third path coupled to a system load, the three paths coupled to a common node. The topology may further include a unidirectional switch coupled to the first path and a selectively unidirectional switch coupled to the second path. The topology may further include a power management control circuit including a wake up circuit having a comparison circuit and an output decision circuit. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.
摘要:
Power control circuitry and method for controlling a variable output DC power source. The power control circuitry may include a first comparator to compare a signal representative of an output current level of the variable output DC power source with a threshold level and provide a first output signal in response to the comparison. The power control circuitry may further include threshold input circuitry to provide the threshold level to the first comparator, the threshold level being a fixed threshold level if an output voltage of the variable output DC power source is less than or equal to a first fixed voltage level, the threshold level being a variable threshold level if the output voltage is greater than the first fixed voltage level.
摘要:
A charging circuit for controlling a system charging parameter provided to a host of rechargeable batteries, wherein the host of batteries includes at least a first battery and second battery that may be coupled in parallel. The charging circuit provides for fast charging of rechargeable batteries in parallel. Independent current and voltage sensing for each battery enables parallel charging of batteries at different charging currents. The charging circuit may be configured to accept either analog or digital signals from an associated power management unit.
摘要:
A power supply topology according to one embodiment includes a first path coupled to a controllable DC power source, a second path coupled to a rechargeable battery, and a third path coupled to a system load, the three paths coupled to a common node. The topology may further include a unidirectional switch coupled to the first path and a selectively unidirectional switch coupled to the second path. The topology may further include a power management control circuit including a wake up circuit having a comparison circuit and an output decision circuit. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.
摘要:
A wake up circuit according to one embodiment includes a comparison circuit and an output decision circuit. The comparison circuit may be adapted to receive a first signal representative of a charging current level provided to a battery via a path and a second signal representative of a predetermined wake up current level and to provide a comparison output signal in response to the first and second signal. The output decision circuit may be adapted to receive at least the comparison output signal and a selector signal from a selector circuit, the output decision circuit providing one of the comparison output signal and the selector signal to a switch to control a state of the switch, the switch coupled to the path.