摘要:
Of side surfaces of a flexible substrate provided on a flexure, one surface opposing an optical fiber forms a mirror surface inclined by a predetermined angle with respect to the longitudinal direction of the optical fiber. Owing to this configuration, the optical fiber is optically coupled to a near-field light element inside a slider.
摘要:
A near-field optical head has a main surface confronting a recording medium during use of the near-field optical head. A sharpened tip is disposed on the main surface and has an optical aperture at a front end thereof. An opaque film covers the sharpened tip and has a plastically deformed portion in the vicinity of the optical aperture. The front end of the sharpened tip projects from the plastically deformed portion of the opaque film. At least one stopper is disposed in the vicinity of the sharpened tip and has a height substantially equal to a height of the sharpened tip. At least one air-bearing surface is disposed on the main surface.
摘要:
An optical microcantilever capable of reducing loss when propagating light. An optical microcantilever 10 comprises a support 1, an optical waveguide 2, a light-blocking film 3, a reflecting film 4, a pointed tip 5, a microscopic aperture 6 formed at the end of the tip 5, and a mirror 7 for reflecting propagating light H propagated from a light input/output end 8 of the optical waveguide 2 towards the microscopic aperture 6.
摘要:
In a recording apparatus for reproducing information recorded on a recording medium by utilizing near-field light, the recording apparatus realizes reliable information reproduction with a simple structure. Illumination light 20 is illuminated to the recording medium 10 to create near-field light on a surface of the recording medium 10. The created near-field light is scattered by a microscopic aperture 12 formed in the aperture element 11 so that scattering light (propagation light) thereof is detected to create a reproduced signal. Derived from the created reproduced light a distance control signal representative of a distance between the microscopic aperture 12 and the recording medium 10. Based on the distance control signal, the aperture element 11 is controlled in position. Due to this, the microscopic aperture 12 is brought into proximity to the recording medium 10.
摘要:
In a method of producing an optical aperture, there is provided an object having a substrate, at least one conical- or pyramidal-shaped tip disposed on the substrate, at least one stopper disposed on the substrate in the vicinity of the tip and having a height substantially equal to a height of the tip, and an opaque film disposed at least on the tip. A pressing body is disposed relative to the object so that a surface of the pressing body is disposed over the tip and at least a portion of the stopper. The pressing body is then displaced to bring the surface of the pressing body into contact with the object so that a force component is directed to a front end of the tip to form an optical aperture at the front end of the tip.
摘要:
An optical waveguide probe is disclosed which is used for a scanning near-field optical microscope, has a low light propagation loss, and is capable of performing an AFM operation, and a manufacturing method thereof is disclosed. The vicinity of the tip of an optical waveguide 2 is bent toward a side of a probe portion 9 through a plurality of surfaces symmetrical with respect to a plane including an optical axis of the optical waveguide 2. By this, a loss of a propagated light 7 at a bent portion 10 is reduced, and the propagated light 7 can be condensed to a minute aperture 5, so that near-field light can be efficiently emitted from the minute aperture 5.
摘要:
A recording medium and near-field optical probe utilizing near-field light to achieve high density of information recording and hence enhance resolution in reproducing. A phase shift arrangement layer is formed arranged alternately with a phase shifter region to cause shift by 180 degrees in incident light and a transmission region transparent for a wavelength of the incident light. Furthermore, a row of data marks are arranged in a position above the phase shifter regions and transmission region. Due to this, cancellation is made between spread of near-field light due to incident light transmitted through the phase shifter region and spread of near-field light due to incident light transmitted through the transmission region, providing sharpness in an intensity distribution of near-field light over the data mark. Also, a phase shifter is provided at a through-hole of the near-field optical probe, enabling to produce more localized near-field light.
摘要:
An information recording medium comprises a double-layer structure comprised of a light transmitting layer for transmitting light and a light reflecting layer for reflecting light, The light transmitting layer has a data mark which comprises a unit of information to be reproduced.
摘要:
A method of manufacturing a near-field light generating element includes a first cladding forming process of forming a first cladding on a substrate, a near-field light generation portion forming process of forming a metal film base material on the first cladding, a core forming process of forming a core base material so as to cover the metal film base material, a single patterning process of collectively patterning the core base material and the metal film base material to form the core and the metal film, respectively, and a second cladding forming process of forming a second cladding so as to interpose the core between the second cladding and the first cladding.
摘要:
A metal film is included which is placed between a core and a cladding, propagates a laser beam along an interface between the core and the cladding, and generates a near-field light from the laser beam. The metal film has a base portion placed on one side surface of the core along a propagation direction of the laser beam facing from one end side toward the other end side, and an extending portion extended from the other end side of the base portion to the other end side in the propagation direction rather than the core. The other end side of the extending portion is exposed to the outside, and is formed with a top portion projected toward the core side when viewed from the propagation direction.