Abstract:
This invention provides a new mechanism for “Hot-Tracing” using a novel placeholder mechanism and binary rewriting techniques, which leverages existing compiler flags in order to enable light-weight and highly flexible dynamic instrumentation. Broadly, I-Probe can be divided in 2 distinct workflows—1. Pre-processing (ColdPatch), and 2. Hot Tracing. The first phase is a pre-processing mechanism to prepare the binary for phase 2. The second phase is the actual hot-tracing mechanism, which allows users to dynamically instrument functions (more specifically symbols) of their choice.
Abstract:
A system and method for profiling a request in a service system with kernel events including a pre-processing module configured to obtain kernel event traces from the service system and determine starting and ending communication pairs of a request path for a request. A learning module is configured to learn pairwise relationships between the starting and ending communication pairs of training traces of sequential requests. A generation module is configured to generate communication paths for the request path from the starting and ending communication pairs of testing traces of concurrent requests using a heuristic procedure that is guided by the learned pairwise relationships and generate the request path for the request from the communication paths. The system and method precisely determine request paths for applications in a distributed system from kernel event traces even when there are numerous concurrent requests.
Abstract:
Methods and systems for process constraint include collecting system call information for a process. It is detected whether the process is idle based on the system call information and then whether the process is repeating using autocorrelation to determine whether the process issues system calls in a periodic fashion. The process is constrained if it is idle or repeating to limit an attack surface presented by the process.
Abstract:
A system for automatically instrumenting and tracing an application program and related software components achieves a correlated tracing of the program execution. It includes tracing of endpoints that are the set of functions in the program execution path that the developers are interested. The tracing endpoints and related events become the total set of functions to be traced in the program (called instrument points). This invention automatically analyzes the program and generates such instrumentation points to enable correlated tracing. The generated set of instrumentation points addresses common questions that developers ask when they use monitoring tools.
Abstract:
This invention provides a new mechanism for “Hot-Tracing” using a novel placeholder mechanism and binary rewriting techniques, which leverages existing compiler flags in order to enable light-weight and highly flexible dynamic instrumentation. Broadly, I-Probe can be divided in 2 distinct workflows—1. Pre-processing (ColdPatch), and 2. Hot Tracing. The first phase is a pre-processing mechanism to prepare the binary for phase 2. The second phase is the actual hot-tracing mechanism, which allows users to dynamically instrument functions (more specifically symbols) of their choice.
Abstract:
A computer-implemented method for implementing protocol-independent anomaly detection within an industrial control system (ICS) includes implementing a detection stage, including performing byte filtering using a byte filtering model based on at least one new network packet associated with the ICS, performing horizontal detection to determine whether a horizontal constraint anomaly exists in the at least one network packet based on the byte filtering and a horizontal model, including analyzing constraints across different bytes of the at least one new network packet, performing message clustering based on the horizontal detection to generate first cluster information, and performing vertical detection to determine whether a vertical anomaly exists based on the first cluster information and a vertical model, including analyzing a temporal pattern of each byte of the at least one new network packet.
Abstract:
Methods and systems for vehicle fault detection include collecting operational data from sensors in a vehicle. The sensors are associated with vehicle sub-systems. The operational data is processed with a neural network to generate a fault score, which represents a similarity to fault state training scenarios, and an anomaly score, which represents a dissimilarity to normal state training scenarios. The fault score is determined to be above a fault score threshold and the anomaly score is determined to be above an anomaly score threshold to detect a fault. A corrective action is performed responsive the fault, based on a sub-system associated with the fault.
Abstract:
Methods and systems for training a neural network model include processing a set of normal state training data and a set of fault state training data to generate respective normal state inputs and fault state inputs that each include data features and sensor correlation graph information. A neural network model is trained, using the normal state inputs and the fault state inputs, to generate a fault score that provides a similarity of an input to the fault state training data and an anomaly score that provides a dissimilarity of the input to the normal state training data.
Abstract:
Methods and systems for detecting and responding to an intrusion in a computer network include generating an adversarial training data set that includes original samples and adversarial samples, by perturbing one or more of the original samples with an integrated gradient attack to generate the adversarial samples. The original and adversarial samples are encoded to generate respective original and adversarial graph representations, based on node neighborhood aggregation. A graph-based neural network is trained to detect anomalous activity in a computer network, using the adversarial training data set. A security action is performed responsive to the detected anomalous activity.
Abstract:
Systems and methods for predicting road conditions and traffic volume is provided. The method includes generating a graph of one or more road regions including a plurality of road intersections and a plurality of road segments, wherein the road intersections are represented as nodes and the road segments are represented as edges. The method can also include embedding the nodes from the graph into a node space, translating the edges of the graph into nodes of a line graph, and embedding the nodes of the line graph into the node space. The method can also include aligning the nodes from the line graph with the nodes from the graph, and optimizing the alignment, outputting a set of node and edge representations that predicts the traffic flow for each of the road segments and road intersections based on the optimized alignment of the nodes.