Abstract:
A sensing system adapted to receive backscattered signal from a sensing fiber includes a first Faraday rotator mirror; a second Faraday rotator mirror; an optical hybrid coupled to the Faraday rotator mirrors, wherein one of the mirrors is coupled with an optical path difference; a 3-port optical circulator coupled to the sensing fiber and the optical hybrid; a first photodetector coupled to the circulator; and three photodetectors coupled to the optical hybrid.
Abstract:
A reconfigurable optical add/drop multiplexer (ROADM) unit includes a first optical circulator coupled to a first terminal; a second optical circulator coupled to a second terminal; a third optical circulator coupled to a third terminal; a fourth optical circulator coupled to a fourth terminal; a first wavelength-selective switch (WSS), coupled to the first, second, and third optical circulators; a second WSS coupled to the first, second, and fourth optical circulators, wherein the first and second WSSes are bidirectional operated; a first 1:2 coupler positioned between the first circulator and the first and second WSSes; a second 1:2 coupler positioned between the second circulator and the first and second WSSes.
Abstract:
A generic centralized, software-defined networking configuration for connecting network is defined as a generic multi-layer topology network entities interconnected either vertically or horizontally regardless of the employed network topology/graph). This centralized configuration enables establishment of a connection between any two networking entities by 1) bypassing intermediate protocol layers and 2) eliminating any handshaking between peer elements of the same layer. The centralized software-defined controller notifies in parallel all involved network entities along a connection path to take all necessary actions (i.e. reconfiguration) to establish the new connection. The centralized controller has authority to control only entities that are software-defined SD.
Abstract:
Methods and systems for embedding VI demands in a software-defined network include mapping virtual nodes over physical nodes in a network topology. An auxiliary graph including virtual links between physical nodes that have a residual capacity sufficient to meet a virtual infrastructure demand is constructed. Virtual links over physical links are mapped to maximize use of existing optical channels and to minimize switching of a virtual link between a wavelength division multiplexing layer and an IP layer. New optical channels with a maximum spectral efficiency are established. A set of potential solutions for embedding a set of virtual infrastructure demands is determined. A solution is selected from the set of potential solutions that maximizes a weighted average of spectrum needed to support the set of virtual infrastructure demands and a cost of provisioning the virtual infrastructure demands.
Abstract:
An optical transceiver including a multi-direction variable transmitter including multiple outputs with different subcarriers being directed to different ones of the outputs to go to different directions in a network, and a multi-direction variable receiver for receiving multiple inputs thereby enabling transmission direction in a network with the transceiver at subcarrier granularity and avoiding entire super-channel granularity and enabling unused subcarriers to be utilized for traffic in other directions or destinations and making switching granularity finer for flexibility in the network.
Abstract:
In an optical communication system containing a primary line and backup line card, a method includes providing interfaces for the primary and backup line card, each line card including a transmitter and receiver; and selecting output from the transmitter from either the primary or back up line card including selecting the backup line card when the primary line card encounters a failure.
Abstract:
A submarine network includes a submarine network with a branching unit BU for splitting or combining a signal between a main trunk path and a branch path for allowing signals from different paths to share a same fiber optic path, said BU and submarine network normally having a fixed and predetermined wavelength arrangement preventing reconfigurability of the submarine network, and a latching wavelength selective switch WSS or wavelength blocker WB in the branching unit for splitting or combining the signals between the main trunk path and branch path to enable a latching capability and enable reconfigurability of the branching unit BU, the latching WSSS being a bistable liquid crystal based material without moving parts for increased stability and lower power consumption over use of conventional mono-stable liquid crystal LC switches in a submarine network.
Abstract:
A method implemented in a network apparatus used in a wavelength division multiplexing (WDM) optical network is disclosed. The method includes (a) selecting unconsidered virtual link (VL) (i,j) with a maximum cost, a cost being requested line rate rij on VL(i, j)×shortest distance between nodes i and j, (b) selecting unconsidered route k out of K-shortest routes between nodes i and j of VL(i, j), (c) determining a bit map of unconsidered route k, (d) finding a modulation format that supports requested line rate rij with minimum spectrum ⌈ r ij s z ⌉ , where Sz is spectral efficiency with which the modulation format transmits a channel, (e) finding ⌈ r ij s z ⌉ consecutive spectrum slots at M lowest wavelengths in the bit map of selected route k, and (f) determining fragmentation factor Fkm after provisioning a channel at each wavelength m on selected route k, where 1≦m≦M. Other apparatuses, systems, and methods also are disclosed.
Abstract translation:公开了一种在波分多路复用(WDM)光网络中使用的网络装置中实现的方法。 该方法包括(a)以最大成本选择未考虑的虚拟链路(VL)(i,j),在VL(i,j)上请求线路速率rij的成本×节点i和j之间的最短距离,(b)选择 在VL(i,j)的节点i和j之间的k个最短路由中未考虑路由k,(c)确定未考虑路由k的位图,(d)找到支持所需线路速率rij的调制格式,具有最小频谱 ⌈r ij sz⌉,其中Sz是调制格式发送信道的频谱效率,(e)在所选路由k的位图中的M个最低波长处找到⌈r ij sz⌉个连续频谱,,以及(f)确定 在选择的路由k上为每个波长m提供信道之后的分段因子Fkm,其中1≦̸ m≦̸ M。 还公开了其他装置,系统和方法。
Abstract:
A communication system enabling a switching procedure for a multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM) based flexible rate intra-data center network DCN, includes a MIMO OFDM DCN with optical burst switching OBS capability, an optical burst switching OBS procedure for influencing the MIMO OFDM DCN, and a centralized control configuration coupled to the MIMO OFDM DCN and enabling a software defined network SDN configuration in the communication system.
Abstract:
An optical transceiver including a multi-direction variable transmitter including multiple outputs with different subcarriers being directed to different ones of the outputs to go to different directions in a network, and a multi-direction variable receiver for receiving multiple inputs thereby enabling transmission direction in a network with the transceiver at subcarrier granularity and avoiding entire super-channel granularity and enabling unused subcarriers to be utilized for traffic in other directions or destinations and making switching granularity finer for flexibility in the network.