Abstract:
Disclosed is a supplemental lift system for use with an aircraft passenger boarding bridge of a type that includes a tunnel section for being extended over the wing of an aircraft in a cantilever-like fashion. The supplemental lift system is for use in an event that a main elevating mechanism of the passenger boarding bridge is other than operable, such that the over the wing portion of the boarding bridge may be moved out of the way of a wing of the aircraft, permitting the same to move in a direction away from the boarding bridge. A preferred embodiment of the supplemental lift system comprises at least a jack including a first portion that is mounted to the aircraft passenger boarding bridge at a point that is distal from an outboard end thereof. The at least a jack further comprises a second portion having a first end for being telescopically received within the first portion such that a length of the jack is variable, and a second end for engaging an area of the ground that is elevationally below the aircraft passenger boarding bridge. The supplemental lift system also includes a power source in communication with the at least a jack for providing the power required for extending the length of the jack.
Abstract:
A baggage handling unit is disclosed for retrofitting an existing passenger boarding bridge having a foundation. The baggage handling unit includes a walkway for coupling a terminal building access port and a rotunda of an existing passenger boarding bridge so as to support passenger movement therebetween. The walkway includes a baggage access port, and a baggage elevating element is mounted adjacent to the baggage access port of the walkway. The baggage handling unit also includes a support having a mounting end configured for engaging the foundation and a support end for supporting the rotunda of the existing passenger boarding bridge at a position that is horizontally displaced from the foundation. A mount is provided for fixedly coupling the baggage handling unit to the rotunda about a point opposite an aircraft engaging portion of the existing passenger boarding bridge, such that the baggage handling unit and the rotunda are structurally attached.
Abstract:
A method and system for parking aircraft at an airport terminal having a plurality of passenger loading bridges is disclosed. According to the invention, a parking space is defined at the terminal for an aircraft of a known type, such that at least a desired clearance is maintained between the aircraft of the known type and all other aircraft parked at the terminal. To this end, a passenger loading bridge associated with the defined parking space is moved so as to accommodate the known type of an aircraft at the defined parking space while maintaining the at least a desired clearance to all other aircraft parked at the terminal. In particular, at different instances of time for different instances of the known type of an aircraft, the associated passenger loading bridge is moved to substantially different locations to accommodate different defined parking spaces. A system for implementing the method includes a database having stored therein aircraft arrival information, a processor in communication with the database for defining the parking spaces such that at least a minimum spacing is maintained between adjacent aircraft and, a controller in communication with the processor, for controlling an interaction between aircraft and passenger loading bridges and terminal operations such that the defined aircraft parking spaces are implemented as actual parking spaces for the aircraft.
Abstract:
Disclosed is an overhead adjustable support system for use with an aircraft passenger boarding bridge, and especially for use with an aircraft passenger boarding bridge having at least two tunnel sections disposed one each on opposite sides of a flexible connection. A preferred embodiment of the overhead adjustable support system includes a first support member for being mounted to one of the at least two tunnel sections at a first point proximate the flexible connection. The first support member also has a free end for being disposed elevationally above the one of the at least two tunnel sections. The overhead adjustable support system also includes a second support member for being mounted to the other one of the at least two tunnel sections at a second point proximate the flexible connection, and has a free end for being disposed elevationally above the other one of the at least two tunnel sections. In addition, the overhead adjustable support system includes at least a lift mechanism having a first end and a second end opposite the first end, a distance between the first end and the second end being controllably variable. The at least a lift mechanism is in hinged communication at the first end thereof with the free end of the first support member and in hinged communication at the second end thereof with the free end of the second support member. During use, varying the distance between the first end and the second end of the at least a lift mechanism effects a change to the orientation of the at least two tunnel sections relative to the flexible connection so as to vertically swing one of the at least two tunnel sections relative to the other one of the at least two tunnel sections about a horizontal axis aligned with the flexible connection.
Abstract:
An apparatus for moving passengers between an airport terminal building and a doorway of an aircraft located rearward of a wing of the aircraft, including a passageway member pivotally anchored to one of the terminal building and a passenger loading bridge for servicing a front doorway of a same aircraft. The apparatus a telescopic passageway member is pivotally mounted to the passageway member via a flexible connection. In use, the apparatus is cantilevered over the wing of an aircraft with the flexible connection substantially above a highest point along an upper surface of the aircraft wing. The flexible connection allows a cabin carried at an outboard end of the telescopic passageway member to mate to the rear doorway of the aircraft, providing an open passageway between the rear doorway and the terminal building through which passengers deplane. Positioning the flexible connection above the high point of the wing approximately minimizes the inclination of each passageway member floor surface.
Abstract:
Disclosed is a method and apparatus for automatically aligning a passenger bridge to a door of an aircraft. The apparatus includes a sensor in the form of a laser range finder, a local computer for receiving signals from the sensor and for controlling bridge movement in dependence thereof, and memory storage for storing data relating to features of aircraft models with which the bridge is to be connected. Automated bridge alignment proceeds under the control of the local computer in dependence upon a determined error factor exceeding a predetermined minimum threshold value, which value is one of a default value and a value specified by a user of the apparatus. Accordingly, the instant invention permits different airlines to accept varying levels of risk associated with automatic bridge alignment.
Abstract:
Apparatus for moving passengers between an airport terminal building and a doorway of an aircraft located rearward of a wing of the aircraft, including a passageway member pivotally anchored to one of the terminal building and a passenger loading bridge for servicing a front doorway of a same aircraft. The apparatus includes a telescopic passageway member that is pivotally mounted to the passageway member via a flexible connection. In use, the apparatus is cantilevered over the wing of an aircraft with the flexible connection substantially above a highest point along an upper surface of the aircraft wing. The flexible connection allows a cabin carried at an outboard end of the telescopic passageway member to mate the rear doorway of the aircraft, providing an open passageway between the rear doorway and the terminal building through which passenger deplane. Positioning the flexible connection above the high point of the wing approximately minimize the inclination of each passageway member floor surface.
Abstract:
A method of aligning one end of a passenger boarding bridge with a doorway of an aircraft includes a step of parking the aircraft within a parking space that is defined adjacent to the passenger boarding bridge. Human intelligible information visually displayed proximate the parking space is determined, the human-intelligible information being uniquely associated with the passenger boarding bridge. Using an input device that is disposed aboard the aircraft, the human-intelligible information is provided to a communication module that is also disposed aboard the aircraft. A signal including the human-intelligible information is transmitted from the communication module to a receiver that is in communication with the passenger boarding bridge. Only signals determined to include the human-intelligible information are accepted as valid signals during a current bridge alignment operation.
Abstract:
A cargo conveyor for use in loading and unloading a cargo compartment comprises: a plurality of conveyor units for being disposed within the cargo compartment and for being temporarily arranged to support a loading or unloading conveyor path having a length that varies during a same loading or unloading operation, the conveyor path for being lengthened during the unloading operation and for being shortened during the loading operation, the plurality of conveyor units for being coupled with and decoupled from the conveyor path for lengthening the conveyor path during the unloading operation and for shortening the conveyor path during the loading operation, respectively.
Abstract:
A system for aligning an aircraft-engaging end of a passenger boarding bridge to a doorway along a lateral surface of an aircraft includes an imager disposed at a location that is remote from the aircraft for capturing an image of a portion of the lateral surface of the aircraft and for providing image data relating to the captured image. A receiver is located aboard the aircraft for receiving a signal including the image data relating to the captured image. In addition, a display device also is located aboard the aircraft and in communication with the receiver, the display device for receiving the image data from the receiver and for displaying to a user aboard the aircraft the image data in a human intelligible form. A user interface located aboard the aircraft is provided for receiving from the user an input signal including an indication of a location of the doorway relative to the displayed image data, and for providing data relating to the input signal. A processor is also provided for determining a location of the doorway in dependence upon the data relating to the input signal and the image data, and for providing a control signal relating to the determined location of the doorway.