Abstract:
A printing material container is detachably attachable to a printing apparatus having a plurality of apparatus-side terminals. The printing material container comprises a first device, a second device, and a terminal group that includes a plurality of first terminals, at least one second terminal and at least one third terminal. The plurality of first terminals are connected to the first device and respectively include a first contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one second terminal is connected to the second device and includes a second contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one third terminal is for the detection of shorting between the at least one second terminal and the at least one third terminal and includes a third contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one second contact portion, the plurality of the first contact portions, and the at least one third contact portion are arranged so as to form one or multiple rows. The at least one second contact portion is arranged at an end of one row among the one or multiple rows.
Abstract:
A printing material container is detachably attachable to a printing apparatus having a plurality of apparatus-side terminals. The printing material container comprises a first device, a second device, and a terminal group that includes a plurality of first terminals, at least one second terminal and at least one third terminal. The plurality of first terminals are connected to the first device and respectively include a first contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one second terminal is connected to the second device and includes a second contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one third terminal is for the detection of shorting between the at least one second terminal and the at least one third terminal and includes a third contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one second contact portion, the plurality of the first contact portions, and the at least one third contact portion are arranged so as to form one or multiple rows. The at least one second contact portion is arranged at an end of one row among the one or multiple rows.
Abstract:
An ink filling apparatus is constituted by an access unit (61) for reading an amount of ink consumed in an ink cartridge (10) which needs to be refilled from a storage unit (15) provided on the relevant cartridge and a filling controlling unit (60) for determining an amount of ink on the basis of the data. Ink in an amount corresponding to the amount of ink consumption stored in the storage unit of the ink cartridge (10) is filled by a filling apparatus (66).
Abstract:
A printing material container is detachably attachable to a printing apparatus having a plurality of apparatus-side terminals. The printing material container comprises a first device, a second device, and a terminal group that includes a plurality of first terminals, at least one second terminal and at least one third terminal. The plurality of first terminals are connected to the first device and respectively include a first contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one second terminal is connected to the second device and includes a second contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one third terminal is for the detection of shorting between the at least one second terminal and the at least one third terminal and includes a third contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one second contact portion, the plurality of the first contact portions, and the at least one third contact portion are arranged so as to form one or multiple rows. The at least one second contact portion is arranged at an end of one row among the one or multiple rows.
Abstract:
The present invention provides a storage device that enables identification data to be readily rewritten and ensures normal completion of a data writing operation in a short time period. In the storage device of the invention, an ID comparator determines whether or not identification data transmitted from a host computer coincides with identification data stored in a memory array. In the case of coincidence, the ID comparator sends an access enable signal EN to an operation code decoder. The operation code decoder analyzes a write/read command, switches over a direction of data transfer with regard to the memory array based on a result of the analysis, and requires an I/O controller to change a high impedance setting of a signal line connecting with a data terminal DT. This series of processing allows access to an address in the memory array specified by a count on an address counter.
Abstract:
The present invention provides a storage device that enables identification data to be readily rewritten and ensures normal completion of a data writing operation in a short time period. In the storage device of the invention, an ID comparator determines whether or not identification data transmitted from a host computer coincides with identification data stored in a memory array. In the case of coincidence, the ID comparator sends an access enable signal EN to an operation code decoder. The operation code decoder analyzes a write/read command, switches over a direction of data transfer with regard to the memory array based on a result of the analysis, and requires an I/O controller to change a high impedance setting of a signal line connecting with a data terminal DT. This series of processing allows access to an address in the memory array specified by a count on an address counter.
Abstract:
In an ink container 100 of the invention, an electric power generator 240 rectifies a carrier wave transmitted from a printer PT and thereby generates an electric power for driving a controller 210 and an RF circuit 200. A program voltage generator 250 and a sensor driving voltage generator 260 are connected in series with the electric power generator 240 to individually generate a program voltage required for writing data into an EEPROM 220 and a voltage required for driving a sensor SS including a piezoelectric element. The arrangement of the invention efficiently generates electric powers, which are to be supplied to respective constituents of a container for a printing material, such as the ink container 100, which establishes communication with a printing device, such as the printer PT, from a preset electric power generated by utilizing a radio wave.
Abstract:
An ink cartridge has a sensor to detect ink. A printer's control device transmits a detection command and specified detection condition to the ink cartridge by radio communication. In response to input of the detection command into the ink cartridge, a sensor controller actuates and vibrates the sensor under the specified detection condition. The sensor is attached to a resonance chamber disposed in an ink chamber. The frequency of vibration of the sensor is regulated by a resonance frequency of the resonance chamber. The resonance frequency is varied by ink in the resonance chamber. Detection of the resonance frequency specifies if ink is in the resonance chamber and the remaining quantity of ink in the ink cartridge. The printer's control device receives the detection result together with the detection condition from the ink cartridge, and cheeks if detection was carried out under the specified detection condition, validate the detection result.
Abstract:
The present invention provides a storage device. The storage device includes a reset signal terminal, a clock signal terminal, a non-volatile memory, and a pull down resistance. The reset signal terminal is electrically connected to external equipment at a contact point, for receiving a reset signal. The clock signal terminal is electrically connected to the external equipment at a contact point, for receiving a clock signal. The data signal terminal is electrically connected to the external equipment at a contact point, for sending and receiving a data signal. The pull down resistance is connected to a lower side of electric potentials used by the storage device, at one terminal of the pull down resistance. The controller is initialized in response to the reset signal. The controller also writes to and reads from the non-volatile memory according to the clock signals and the data signals. The data signal includes a signal configured to raise a voltage of the data signal terminal to a higher side of the electric potentials, for instructing to write to the non-volatile memory. The data signal terminal is connected to the other terminal of the pull down resistance.
Abstract:
[Problem ] To provide a technique that reduces a drop of induced voltage in a non-contact tag. [Solution ] An expendable container of the present invention comprises a memory circuit. The memory circuit has a memory, an antenna being capable of establishing non-contact communication with an external receiver transmitter, and a controller controlling the non-contact communication and an access to the memory. The memory circuit has a plurality of modes including ID information confirmation mode and low power consumption mode. The memory circuit is capable of shifting to the low power consumption mode in response to a completion of confirmation of the ID information of the expendable container.