摘要:
A display device includes a first substrate, at least a first protrusion, a first electrode, a second substrate, at least a second protrusion, a second electrode and a display medium. The first protrusion is disposed on the first substrate. The first electrode is disposed on the first protrusion. The second substrate is disposed opposite to the first substrate. The second protrusion is disposed on the second substrate. The second electrode is disposed on the second protrusion, wherein the first electrode and the second electrode are displaced in a horizontal direction so as to form a lateral electric field therebetween. The display medium is sandwiched between the first and the second substrates.
摘要:
A display device includes a display module, a light source module and a guiding optical film. The display module includes a first substrate, a second substrate and a display medium. The light source module generates directional light. The display module has a vertical electric field. The display medium is optically isotropic, and the display medium is optically anisotropic when driven by the vertical electric field. The directional light is not perpendicular to the first substrate when the directional light enters the display nodule. The directional light is not perpendicular to the second substrate when the directional light exits the display module. The guiding optical film is disposed on the second substrate and has a light incident surface and a light emitting surface. After the directional light exits the guiding optical film, emitting light is formed, and the emitting light and the light emitting surface has an included angle there between.
摘要:
A polarizing lamp includes a polarization beam splitter, a metallic grating reflector having metallic gratings with a trapezoidal profile, and an unpolarized light source positioned between the polarization beam splitter and the metallic grating reflector.
摘要:
A transflective liquid crystal display with uniform cell gap configuration throughout the transmissive and the reflective display region is invented. Mutually complementary common electrode pattern and reflector pattern or mutually complementary ITO pixel electrode pattern and reflector pattern produce an electric field in the transmissive display region that has a uniform longitudinal field and an electric field in the reflective display region that is a fringing field. An initially vertically aligned negative dielectric anisotropic nematic liquid crystal material between the electrodes forms a smaller tilt angle with respect to the substrate normal in the reflective display region while a larger tilt angle with respect to the substrate normal in the transmissive display region. Consequently, the ambient incident light experiences smaller phase retardation in the reflective display region while the light from the backlight source experiences larger phase retardation. Since the ambient light passes through the reflective display region twice while the light from the backlight source passes through the transmissive display region only once, by properly designing the electrodes and the reflector width, the light from both ambient light source and backlight source will experience almost the same phase retardation in both reflective and transmissive display regions. As a result, the electro-optical performance curves of both-transmissive display mode and reflective display mode overlap.
摘要:
Apparatus, methods, systems and devices for high aperture ratio, high transmittance, and wide viewing angle liquid crystal display having first and second substrates each with an alignment layer and polarizer on the interior and exterior surface thereof and a liquid crystal material therebetween forming plural pixels each having a common electrode group and a pixel electrode group each having at least one common and pixel electrode. A fringe field drives the molecules in the regions above and below the electrodes and a horizontal field drives the molecules between the electrode groups to achieve high transmittance. In an embodiment an insulating layer separates the substrate and alignment layer and the pixel electrodes are on the substrate and the common electrodes are on the insulating layer. In another embodiment a compensation film is layered between one of the substrates and corresponding polarizer.
摘要:
The apparatus, methods, system and devices of the present invention provides transflective LCD system structure wherein each pixel is composed of at least three reflective sub-pixels and at least one transmissive sub-pixel. The reflective sub-pixels have a color filter layer for displaying color reflective images and the transmissive sub-pixel it is driven by color sequential imaging method for displaying a color transmissive image. The configuration of the sub-pixels and the location of the sub-pixel electronics increases the aperture ratio of both transmissive sub-pixel and reflective sub-pixel to improve the image brightness and lower the overall power consumption of the device.
摘要:
A liquid crystal display having a positive A-film and a negative A-film between a top polarizer and a bottom polarizer to increase the viewing angle of the liquid crystal display by reducing or eliminating light leakage at voltage-off state when viewed from an oblique angle. Method of increasing the viewing angle of the liquid crystal display by reducing or eliminating light leakage at voltage-off stage when viewed from an oblique angle. The compensation is applicable to use with liquid crystal displays having a liquid crystal layer that is homogenously aligned at off-state when no voltage is applied to the liquid crystal layer, such as IPS and FFS mode liquid crystal displays.
摘要:
A liquid crystal display having a positive A-film and a negative A-film between a top polarizer and a bottom polarizer to increase the viewing angle of the liquid crystal display by reducing or eliminating light leakage at voltage-off state when viewed from an oblique angle. Method of increasing the viewing angle of the liquid crystal display by reducing or eliminating light leakage at voltage-off stage when viewed from an oblique angle. The compensation is applicable to use with liquid crystal displays having a liquid crystal layer that is homogenously aligned at off-state when no voltage is applied to the liquid crystal layer, such as IPS and FFS mode liquid crystal displays.
摘要:
A transflective liquid crystal display with uniform cell gap configuration throughout the transmissive and the reflective display region is invented. Mutually complementary common electrode pattern and reflector pattern or mutually complementary ITO pixel electrode pattern and reflector pattern produce an electric field in the transmissive display region that has a uniform longitudinal field and an electric field in the reflective display region that is a fringing field. An initially vertically aligned negative dielectric anisotropic nematic liquid crystal material between the electrodes forms a smaller tilt angle with respect to the substrate normal in the reflective display region while a larger tilt angle with respect to the substrate normal in the transmissive display region. Consequently, the ambient incident light experiences smaller phase retardation in the reflective display region while the light from the backlight source experiences larger phase retardation. Since the ambient light passes through the reflective display region twice while the light from the backlight source passes through the transmissive display region only once, by properly designing the electrodes and the reflector width, the light from both ambient light source and backlight source will experience almost the same phase retardation in both reflective and transmissive display regions. As a result, the electro-optical performance curves of both transmissive display mode and reflective display mode overlap.
摘要:
A liquid-filled variable focus lens cell is disclosed. The liquid lens cell consists of four parts: a clear distensible membrane, a transparent wall member, liquid with a fixed volume stored in lens cell chamber, and an annular periphery sealing ring. The inner surfaces of the annular sealing ring are sealed with distensible membrane. The radius of the annular sealing ring is changeable, similar to a conventional iris diaphragm. By tuning the radius of the annular sealing ring, the stored liquid in the lens cell will be redistributed, thus change the curvature of the distensible membrane. Therefore, the liquid lens cell can cause light to converge or diverge. The liquid filled lens can be operated mechanically or automatically.