Abstract:
The present specification discloses methods for inspecting an object. The method includes scanning an object in a two-step process. In the primary scan, a truck or cargo container (container) is completely scanned with a fan beam radiation, the transmitted radiation is measured with an array of detectors, and the transmission information and optionally the fission signatures are analyzed to determine the presence of high-density, high-Z and fissionable materials. If the container alarms in one or more areas, the areas are subjected to a secondary scan. This is done by precisely repositioning the container to the location of the suspect areas, adjusting the scanning system to focus on the suspect areas, performing a stationary irradiation of the areas, and analyzing the measured feature signatures to clear or confirm the presence of SNM.
Abstract:
The present specification provides an X-ray inspection system including an X-ray source and a corresponding detector for detecting transmitted X rays having a wide range of intensities. The detector includes at least one crystal for producing a light signal upon interaction with X-rays. Each crystal is connected to at least one photodiode and a photomultiplier. A processing unit connected with the crystal rejects all detected radiation having energies below a predefined threshold value.
Abstract:
Systems and methods are used to increase the penetration and reduce the exclusion zone of radiographic systems. An X-ray detection method irradiates an object with X-ray fanlets including vertically moving fan beams, each fanlet having an angular range smaller than the angular coverage of the object. The fanlets are produced by modulating an X-ray beam, synchronizing the X-ray beam and the fanlets, detecting the fanlets irradiating the object, collecting image slices from the detector array corresponding to a complete scan cycle of the fanlets, and processing the image slices collected for combining into a composite image.
Abstract:
The present specification discloses a covert mobile inspection vehicle with a backscatter X-ray scanning system that has an X-ray source and detectors for obtaining a radiographic image of an object outside the vehicle. The system is configured to also simultaneously detect passive radiation. The systems preferably include at least one sensor for determining a distance from at least one of the detectors to points on the surface of the object being scanned, a processor for processing the obtained radiographic image by using the determined distance of the object to obtain an atomic number of each material contained in the object, and one or more sensors to obtain surveillance data from a predefined area surrounding the vehicle.
Abstract:
The present invention is directed to an inspection system that has a radiation source, a detector array, an inspection region, and a processing unit, where the processing unit a) obtains a radiographic image, b) segments the radiographic image based on radiation attenuation or transmission, c) identifies at least one segmented area on the radiographic image, d) filters the at least one segmented area using at least one geometric filter, e) generates feature vectors using the filtered segmented area; and f) compares the feature vectors against predefined values to determine whether a high-atomic-number object is present.
Abstract:
A second stage screening system configured to resolve a threat alarm detected in a cargo by a first stage screening system. The second stage screening system includes layers of first muon detectors placed above the cargo to detect a first coordinate and an angle of incidence of incoming muons and layers of second muon detectors placed below the cargo to detect an actual coordinate and an actual angle of exit of the incoming muons. The first and second detectors measure a momentum of the incoming muons. A processing unit receives threat sensitivity vectors determined from the first stage, operates a cargo positioning system that centers a high-Z threat within the cargo, relative to the first and second muon detectors, and analyzes the momentum and a distribution of deflection angles between the angles of incidence and exit to resolve the threat alarm.
Abstract:
The present specification describes systems and methods for the simultaneous detection of radioactive materials such as neutrons, muons and gamma rays based on thin gap chamber technology. A thin-gap chamber (TGC) is disclosed having a thermal neutron absorber material, such as 10B4C or 10B8C, which interacts with neutrons to emit heavy particles. The heavy particles, in turn, interact with the gas present in chamber to produce ionization that is converted into a measurable signal. The TGC is embedded in a neutron moderating medium. The detector systems are fabricated from commercially available construction materials and are easy to manufacture at a reasonable cost when compared to conventional He-3 neutron detector systems.
Abstract:
The present invention provides a multi-view X-ray inspection system. In one embodiment, a beam steering mechanism directs the electron beam from an X-ray source to multiple production targets which generate X-rays for scanning which are subsequently detected by a plurality of detectors to produce multiple image slices (views). The system is adapted for use in CT systems. In one embodiment of a CT system, an electron beam generated by a single radiation source is steered by an electron beam transport mechanism comprising at least two dipoles and a quadrupole on to a target arranged in an approximated arc. The inspection system, in any configuration, can be deployed inside a vehicle for use as a mobile detection system.
Abstract:
The present specification discloses methods for inspecting liquids, aerosols and gels (LAGs) for threats. The method includes scanning LAGs packed in plastic bags in a multiple step process. In a primary scan, the bag is scanned using dual energy CT technique with fan beam radiation. In case of an alarm, the alarming LAG container is scanned again using coherent X-ray scatter technique with cone beam radiation. The system has a mechanism to switch between two collimators to produce either fan beam or cone beam. The system also has a mechanism to position the target properly for scanning and prevent container overlap when scanning multiple LAG containers in a bag.
Abstract:
The present specification describes systems and methods for the simultaneous detection of radioactive materials such as neutrons, muons and gamma rays based on thin gap chamber technology. A thin-gap chamber (TGC) is disclosed having a thermal neutron absorber material, such as 10B4C or 10B8C, which interacts with neutrons to emit heavy particles. The heavy particles, in turn, interact with the gas present in chamber to produce ionization that is converted into a measurable signal. The TGC is embedded in a neutron moderating medium. The detector systems are fabricated from commercially available construction materials and are easy to manufacture at a reasonable cost when compared to conventional He-3 neutron detector systems.