摘要:
User specific modulation-symbol scrambling is implemented for various uplink segments, e.g., uplink traffic acknowledgement channel (ULTACH), uplink state request channel (ULSRCH), and uplink dedicated control channel (ULDCCH) segments. A wireless terminal is assigned a wireless terminal scrambling identifier. A set of ordered input modulation symbols are determined for an uplink dedicated segment to which user specific scrambling is to be applied. One bit of the assigned wireless terminal scrambling identifier is associated with each of the ordered input modulation symbols of a segment in accordance with a predetermined mapping. For each input modulation symbol a scrambling operation, e.g., a phase rotation of the input modulation symbol, is performed as a function of the associated user specific scrambling identifier bit to obtain a corresponding output modulation symbol. A value of (0,1) for a scrambling ID bit is associated with a (first, second) amount of phase rotation, e.g., (0, 180) degrees, respectively.
摘要:
Methods and apparatus for use in a wireless communications system in which traffic air link resources may be, and sometimes are, shared are described. Various described methods and apparatus are well suited for use in a peer to peer communications system in which transmission control decisions are made in a decentralized manner. An exemplary peer to peer communications system implements the scheduling of traffic intervals in a distributed manner utilizing connection priority information and interference information. An exemplary peer to peer timing structure includes a user scheduling interval and an associated traffic interval. The user scheduling interval includes a plurality transmission request/request response rounds. By utilizing multiple request/request response rounds, a transmission decision corresponding to a connection to yield in an earlier round can be overridden in a subsequent round, resulting in higher overall traffic throughput in the system.
摘要:
A base station having the strongest downlink signal is identified by utilizing a unique slope of a pilot tone hopping sequence being transmitted by a base station. Specifically, base station identification is realized by determining the slope of the strongest received pilot signal, i.e., the received pilot signal having the maximum energy. In an embodiment of the invention, the pilot tone hopping sequence is based on a Latin Squares sequence. With a Latin Squares based pilot tone hopping sequence, all a mobile user unit needs is to locate the frequency of the pilot tones at one time because the pilot tone locations at subsequent times can be determined from the slope of the Latin Squares pilot tone hopping sequence. The slope and initial frequency shift of the pilot tone hopping sequence with the strongest received power is determined by employing a unique maximum energy detector. In one embodiment, the slope and initial frequency shift of the pilot signal having the strongest received power is determined by finding the slope and initial frequency shift of a predicted set of pilot tone locations having the maximum received energy. In another embodiment, the frequency shift of the pilot signal with the strongest, i.e., maximum, received power is estimated at each of times “t”. These frequency shifts are employed in accordance with a prescribed relationship to determine the unknown slope and the initial frequency shift of the pilot signal.
摘要:
A base station having the strongest downlink signal is identified by utilizing a unique slope of a pilot tone hopping sequence being transmitted by a base station. Specifically, base station identification is realized by determining the slope of the strongest received pilot signal, i.e., the received pilot signal having the maximum energy. In an embodiment of the invention, the pilot tone hopping sequence is based on a Latin Squares sequence. With a Latin Squares based pilot tone hopping sequence, all a mobile user unit needs is to locate the frequency of the pilot tones at one time because the pilot tone locations at subsequent times can be determined from the slope of the Latin Squares pilot tone hopping sequence. The slope and initial frequency shift of the pilot tone hopping sequence with the strongest received power is determined by employing a unique maximum energy detector.
摘要:
A method and apparatus for joint time and frequency synchronization for orthogonal frequency division multiplexing (OFDM) systems. A multitone pilot signal is sent in a designated OFDM symbol period. The receiver synchronizes to the pilot signal in a two-stage procedure. The first stage estimates the frequency offset coarsely with a frequency-domain correlation method and estimates the time offset with smoothed time-domain correlation. In a multipath channel, the smoothed time offset estimate is used to locate a cyclic prefix interval which captures the maximum total signal energy. The second stage improves the frequency estimate with a computationally efficient numerical optimization method.
摘要:
Tone sequences in a frequency hopping arrangement are generated and assigned by advantageously employing a combination of a sequence generator and a sequence assignor to generate sequences and assign them on a time slot by time slot basis. In a transmitter, the sequence generator and sequence assignor, in combination with a user tone assignor are employed to generate and assign tone sequences to a user on a time slot by time slot basis. In a receiver, the sequence generator and sequence assignor, in combination with a user tone identifier are employed to generate sequences and to identify incoming tone sequences to a user on a time slot by time slot basis. Specifically, the sequence assignment in a time slot is such that a prescribed plurality of sequences is assigned to a particular user. This partitioning of the tasks facilitates the use of a sequence generator that generates sequences with the desirable properties of interference and frequency diversity and, which, leaves the task of properly assigning these sequences among one or more users to the sequence assignor. The sequence assignor functions in such a manner that the interference and frequency diversity properties for the one or more users are preserved, and this is further facilitated by assigning sequences in such a manner that they maximally overlap prior assigned sequences. In one embodiment of the invention, a Latin square based sequence is generated in accordance with a first prescribed process. In a second embodiment of the invention, a Latin cube based sequence is generated in accordance with a second prescribed process. In a third embodiment of the invention, a Latin hypercube of prescribed dimension based sequence is generated in accordance with a third prescribed process. In still another embodiment of the invention, the principles of the invention are employed to realize frequency band hopping.
摘要:
Techniques for efficiently sending reports in a wireless communication system are described. Reports may be sent repetitively in accordance with a reporting format. A terminal receives an assignment of a control channel used to send reports and determines a reporting format to use based on the assignment. The reporting format indicates a specific sequence of reports sent in specific locations of a control channel frame. The terminal generates a set of reports for each reporting interval and arranges the set of reports in accordance with the reporting format. The terminal repetitively sends a plurality of sets of reports in a plurality of reporting intervals. Reports may also be sent adaptively based on operating conditions. An appropriate reporting format may be selected based on the operating conditions of the terminal, which may be characterized by environment (e.g., mobility), capabilities, QoS, and/or other factors.
摘要:
Techniques for efficiently sending reports in a wireless communication system are described. Reports may be sent repetitively in accordance with a reporting format. A terminal receives an assignment of a control channel used to send reports and determines a reporting format to use based on the assignment. The reporting format indicates a specific sequence of reports sent in specific locations of a control channel frame. The terminal generates a set of reports for each reporting interval and arranges the set of reports in accordance with the reporting format. The terminal repetitively sends a plurality of sets of reports in a plurality of reporting intervals. Reports may also be sent adaptively based on operating conditions. An appropriate reporting format may be selected based on the operating conditions of the terminal, which may be characterized by environment (e.g., mobility), capabilities, QoS, and/or other factors.
摘要:
A method and apparatus for joint time and frequency synchronization for orthogonal frequency division multiplexing (OFDM) systems. A multitone pilot signal is sent in a designated OFDM symbol period. The receiver synchronizes to the pilot signal in a two-stage procedure. The first stage estimates the frequency offset coarsely with a frequency-domain correlation method and estimates the time offset with smoothed time-domain correlation. In a multipath channel, the smoothed time offset estimate is used to locate a cyclic prefix interval which captures the maximum total signal energy. The second stage improves the frequency estimate with a computationally efficient numerical optimization method.
摘要:
Various schemes for reducing effects of interference within communication systems are disclosed. A transmitter transmits a signal in a first time interval and a scrambled version of the signal in a second time interval, which does not overlap with the first time interval. A receiver receives a composite signal including a signal transmitted from the desired transmitter as well as signals from interferers in the first or the second time interval. The receiver determines a dominant interferer and obtains knowledge of signal scrambling done by the interferer as well as the desired transmitter by sensing an identification associated with the interferer or the desired transmitter. This knowledge is employed to determine coefficients for combining the received composite signals received in the first and the second time interval in order to recover the desired signal in a manner that maximizes the SNR associated with the desired signal or completely cancels the dominant interference.