Resource adaptive spectrum estimation of streaming data
    42.
    发明授权
    Resource adaptive spectrum estimation of streaming data 有权
    流数据资源自适应频谱估计

    公开(公告)号:US08494036B2

    公开(公告)日:2013-07-23

    申请号:US12177300

    申请日:2008-07-22

    IPC分类号: H04B3/46

    CPC分类号: G06F17/141

    摘要: Streaming environments typically dictate incomplete or approximate algorithm execution, in order to cope with sudden surges in the data rate. Such limitations are even more accentuated in mobile environments (such as sensor networks) where computational and memory resources are typically limited. Introduced herein is a novel “resource adaptive” algorithm for spectrum and periodicity estimation on a continuous stream of data. The formulation is based on the derivation of a closed-form incremental computation of the spectrum, augmented by an intelligent load-shedding scheme that can adapt to available CPU resources. Experimentation indicates that the proposed technique can be a viable and resource efficient solution for real-time spectrum estimation.

    摘要翻译: 流环境通常会指示不完整或近似算法执行,以应对数据速率的突然增加。 在计算和存储资源通常受限制的移动环境(如传感器网络)中,这种限制更加突出。 这里介绍的是一种用于连续数据流的频谱和周期估计的新型“资源自适应”算法。 该公式基于频谱的闭合增量计算的推导,通过可以适应可用CPU资源的智能加载开放方案来增强。 实验表明,提出的技术可以成为实时频谱估计的可行且资源有效的解决方案。

    Method and apparatus for adaptive in-operator load shedding
    43.
    发明授权
    Method and apparatus for adaptive in-operator load shedding 失效
    自适应操作员负载脱落的方法和装置

    公开(公告)号:US08478875B2

    公开(公告)日:2013-07-02

    申请号:US12164671

    申请日:2008-06-30

    IPC分类号: G06F15/173

    摘要: One embodiment of the present method and apparatus adaptive in-operator load shedding includes receiving at least two data streams (each comprising a plurality of tuples, or data items) into respective sliding windows of memory. A throttling fraction is then calculated based on input rates associated with the data streams and on currently available processing resources. Tuples are then selected for processing from the data streams in accordance with the throttling fraction, where the selected tuples represent a subset of all tuples contained within the sliding window.

    摘要翻译: 本发明的方法和设备的一个实施例是自适应操作员卸载包括将至少两个数据流(每个包括多个元组或数据项)接收到存储器的相应滑动窗口中。 然后基于与数据流相关联的输入速率和当前可用的处理资源来计算节流分数。 然后根据节流分数从数据流中选择元组进行处理,其中所选元组表示包含在滑动窗口内的所有元组的子集。

    Systems and methods for optimal component composition in a stream processing system
    44.
    发明授权
    Systems and methods for optimal component composition in a stream processing system 有权
    流处理系统中最佳组件组成的系统和方法

    公开(公告)号:US08286153B2

    公开(公告)日:2012-10-09

    申请号:US12061284

    申请日:2008-04-02

    IPC分类号: G06F9/45

    CPC分类号: H04L12/4641

    摘要: A system and method are provided for optimizing component composition in a distributed stream-processing environment having a plurality of nodes capable of being associated with one or more of a plurality of stream processing components. The system includes an adaptive composition probing (ACP) module and a hierarchical state manager. The ACP module probes a subset of the plurality of stream processing components to determine the optimal component composition in response to a stream processing request. The hierarchical state manager manages local and global information for use by said ACP module in determining the optimal component composition.

    摘要翻译: 提供了一种用于在分布式流处理环境中优化组件组成的系统和方法,其具有能够与多个流处理组件中的一个或多个相关联的多个节点。 该系统包括自适应组合探测(ACP)模块和分级状态管理器。 ACP模块探测多个流处理组件的子集,以响应于流处理请求来确定最佳组件组成。 层级状态管理器管理本地和全局信息,供所述ACP模块在确定最佳组件组成时使用。

    System and method for historical diagnosis of sensor networks
    45.
    发明授权
    System and method for historical diagnosis of sensor networks 失效
    传感器网络历史诊断系统及方法

    公开(公告)号:US07676458B2

    公开(公告)日:2010-03-09

    申请号:US11846397

    申请日:2007-08-28

    CPC分类号: G06K9/00979

    摘要: A method of querying a hierarchically organized sensor network, said network being sensor network with a global coordinator node at a top level which receives data from lower level intermediate nodes which are either leader nodes for lower level nodes or sensor nodes, wherein a sensor node i at a lowest level receives a signal Y(i,t) at time t, said method including constructing a sketch Swkt=(Swkt1, . . . , Swktn) for an internal node k from S wkt j = ∑ i ∈ LeafDescendents ⁡ ( k ) ⁢ ∑ q = 1 i ⁢ b wiq · r iq j , wherein component Swktj is a sketch of a descendent of node k, ritj is a random variable associated with each sensor node i and time instant t wherein index j refers to independently drawn instantiations of the random variable, bit bwit represents a state of sensor node i for signal value w=Y(i,t) at time t, and LeafDescendents(k) are the lowest level sensor nodes under node k, wherein said sketch is adapted for responding to queries regarding a state of said network.

    摘要翻译: 一种查询分级组织的传感器网络的方法,所述网络是具有在顶层的全局协调器节点的传感器网络,其从作为下级节点或传感器节点的前导节点的较低级中间节点接收数据,其中传感器节点i 在最低级别,在时间t接收信号Y(i,t),所述方法包括从S wkt j =Σi∈LeafDescendents including(...)构建内部节点k的草图Swkt =(Swkt1,...,Swktn) k)Σq = 1 i b wiq·r iq j,其中分量Swktj是节点k的后代的草图,ritj是与每个传感器节点i和时刻t相关联的随机变量,其中索引j独立地指 随机变量的抽取实例,位bwit表示在时间t处信号值w = Y(i,t)的传感器节点i的状态,LeafDescendents(k)是节点k处的最低级传感器节点,其中所述草图是 适于响应关于所述网络的状态的查询 k。

    Systems and methods for optimal component composition in a stream processing system
    46.
    发明授权
    Systems and methods for optimal component composition in a stream processing system 失效
    流处理系统中最佳组件组成的系统和方法

    公开(公告)号:US07562355B2

    公开(公告)日:2009-07-14

    申请号:US11068785

    申请日:2005-03-01

    IPC分类号: G06F9/45

    CPC分类号: H04L12/4641

    摘要: A system and method are provided for optimizing component composition in a distributed stream-processing environment having a plurality of nodes capable of being associated with one or more of a plurality of stream processing components. The system includes an adaptive composition probing (ACP) module and a hierarchical state manager. The ACP module probes a subset of the plurality of stream processing components to determine the optimal component composition in response to a stream processing request. The hierarchical state manager manages local and global information for use by said ACP module in determining the optimal component composition.

    摘要翻译: 提供了一种用于在分布式流处理环境中优化组件组成的系统和方法,其具有能够与多个流处理组件中的一个或多个相关联的多个节点。 该系统包括自适应组合探测(ACP)模块和分级状态管理器。 ACP模块探测多个流处理组件的子集,以响应于流处理请求来确定最佳组件组成。 层级状态管理器管理本地和全局信息,供所述ACP模块在确定最佳组件组成时使用。

    METHOD AND SYSTEM FOR PREDICTING RESOURCE USAGE OF REUSABLE STREAM PROCESSING ELEMENTS
    47.
    发明申请
    METHOD AND SYSTEM FOR PREDICTING RESOURCE USAGE OF REUSABLE STREAM PROCESSING ELEMENTS 有权
    用于预测资源使用可回收流程处理元素的方法和系统

    公开(公告)号:US20090119238A1

    公开(公告)日:2009-05-07

    申请号:US11935079

    申请日:2007-11-05

    IPC分类号: G06N5/04

    CPC分类号: G06N99/005

    摘要: A method is provided for generating a resource function estimate of resource usage by an instance of a processing element configured to consume zero or more input data streams in a stream processing system having a set of available resources that comprises receiving at least one specified performance metric for the zero or more input data streams and a processing power of the set of available resources, wherein one specified performance metric is stream rate; generating a multi-part signature of executable-specific information for the processing element and a multi-part signature of context-specific information for the instance; accessing a database of resource functions to identify a static resource function corresponding to the executable-specific information and a context-dependent resource function corresponding to the context-specific information; combining the static resource function and the context-dependent resource function to form a composite resource function for the instance; and applying the resource function to the at least one specified performance metric and the processing power to generate the resource function estimate of the at least one specified performance metric for processing by the instance.

    摘要翻译: 提供了一种用于通过被配置为在具有一组可用资源的流处理系统中消耗零个或多个输入数据流的处理元件的实例来生成资源使用的资源功能估计的方法,所述流处理系统包括:一组可用资源,其包括接收至少一个指定的性能度量 零个或多个输入数据流和可用资源集合的处理能力,其中一个指定的性能度量是流速率; 生成用于处理元件的可执行特定信息的多部分签名和该实例的上下文特定信息的多部分签名; 访问资源功能的数据库以识别与所述可执行特定信息相对应的静态资源功能以及与所述上下文特定信息相对应的与上下文相关的资源功能; 结合静态资源功能和上下文相关资源功能,形成实例的复合资源功能; 以及将所述资源功能应用于所述至少一个指定的性能度量和所述处理能力以生成所述至少一个指定的性能度量的所述资源功能估计,以供所述实例处理。

    System and Method for Historical Diagnosis of Sensor Networks

    公开(公告)号:US20090063432A1

    公开(公告)日:2009-03-05

    申请号:US11846397

    申请日:2007-08-28

    IPC分类号: G06F17/30

    CPC分类号: G06K9/00979

    摘要: A method of querying a hierarchically organized sensor network, said network being sensor network with a global coordinator node at a top level which receives data from lower level intermediate nodes which are either leader nodes for lower level nodes or sensor nodes, wherein a sensor node i at a lowest level receives a signal Y(i,t) at time t, said method including constructing a sketch Swkt=(Swkt1, . . . ,Swktn) for an internal node k from S wkt j = ∑ i ∈ LeafDescendents  ( k )  ∑ q = 1 i  b wiq · r iq j , wherein component Swktj is a sketch of a descendent of node k, ritj is a random variable associated with each sensor node i and time instant t wherein index j refers to independently drawn instantiations of the random variable, bit bwit represents a state of sensor node i for signal value w=Y(i,t) at time t, and LeafDescendents(k) are the lowest level sensor nodes under node k, wherein said sketch is adapted for responding to queries regarding a state of said network.

    METHOD AND APPARATUS FOR ADAPTIVE LOAD SHEDDING
    49.
    发明申请
    METHOD AND APPARATUS FOR ADAPTIVE LOAD SHEDDING 失效
    用于自适应载荷的方法和装置

    公开(公告)号:US20090049187A1

    公开(公告)日:2009-02-19

    申请号:US12165524

    申请日:2008-06-30

    IPC分类号: G06F15/16

    CPC分类号: H04L49/90

    摘要: One embodiment of the present method and apparatus adaptive load shedding includes receiving at least one data stream (comprising a plurality of tuples, or data items) into a first sliding window of memory. A subset of tuples from the received data stream is then selected for processing in accordance with at least one data stream operation, such as a data stream join operation. Tuples that are not selected for processing are ignored. The number of tuples selected and the specific tuples selected depend at least in part on a variety of dynamic parameters, including the rate at which the data stream (and any other processed data streams) is received, time delays associated with the received data stream, a direction of a join operation performed on the data stream and the values of the individual tuples with respect to an expected output.

    摘要翻译: 本发明的方法和设备的一个实施例是自适应负载脱落包括将至少一个数据流(包括多个元组或数据项)接收到存储器的第一滑动窗口中。 然后根据至少一个数据流操作(例如数据流加入操作)选择来自接收到的数据流的元组的子集用于处理。 未选择处理的元组将被忽略。 所选择的元组的数量和所选择的特定元组至少部分取决于各种动态参数,包括接收数据流(和任何其他处理的数据流)的速率,与接收到的数据流相关联的时间延迟, 对数据流执行的连接操作的方向和相对于预期输出的单个元组的值。

    System and method for load shedding in data mining and knowledge discovery from stream data
    50.
    发明授权
    System and method for load shedding in data mining and knowledge discovery from stream data 有权
    数据挖掘中的负载脱落和流数据的知识发现的系统和方法

    公开(公告)号:US07493346B2

    公开(公告)日:2009-02-17

    申请号:US11058944

    申请日:2005-02-16

    IPC分类号: G06F12/00 G06F17/30 G06F9/46

    CPC分类号: G06K9/6297 H04L43/028

    摘要: Load shedding schemes for mining data streams. A scoring function is used to rank the importance of stream elements, and those elements with high importance are investigated. In the context of not knowing the exact feature values of a data stream, the use of a Markov model is proposed herein for predicting the feature distribution of a data stream. Based on the predicted feature distribution, one can make classification decisions to maximize the expected benefits. In addition, there is proposed herein the employment of a quality of decision (QoD) metric to measure the level of uncertainty in decisions and to guide load shedding. A load shedding scheme such as presented herein assigns available resources to multiple data streams to maximize the quality of classification decisions. Furthermore, such a load shedding scheme is able to learn and adapt to changing data characteristics in the data streams.

    摘要翻译: 挖掘数据流的加载脱落方案。 使用评分函数对流元素的重要性进行排序,并调查那些具有重要意义的元素。 在不知道数据流的精确特征值的上下文中,本文提出了使用马尔可夫模型来预测数据流的特征分布。 基于预测的特征分布,可以进行分类决定,以最大限度地提高预期效益。 此外,在此提出采用质量决策(QoD)度量来衡量决策中的不确定性水平并指导负荷脱落。 诸如此处呈现的负载脱落方案将可用资源分配给多个数据流以最大化分类决定的质量。 此外,这种负载脱落方案能够学习和适应数据流中不断变化的数据特性。