Abstract:
A liquid crystal display (LCD) panel is disclosed. The LCD panel includes a plurality of pixels arranged in rows and columns, a first sub gate-line coupled to first row-pixels that are adjacent to a lower side of the first sub gate-line, a second sub gate-line coupled to second row-pixels that are adjacent to an upper side of the second sub gate-line, a plurality of gate-lines between the first sub gate-line and the second sub gate-line, a plurality of even data-lines coupled to first column-pixels that are adjacent to the even data-lines, and a plurality of odd data-lines coupled to second column-pixels that are adjacent to the odd data-lines. Here, each gate-line of the plurality of gate lines is coupled to first row-pixels that are adjacent to a lower side of the gate-line and second row-pixels that are adjacent to an upper side of the gate-line.
Abstract:
A method of adjusting luminance of an organic light emitting display device is provided. By the method, initial compensation data are derived from optical images of a plurality of pixels, a look-up table (LUT) is generated using the initial compensation data, compensation data are derived by measuring deterioration degrees of the pixels, the LUT is updated by applying a filter for redistributing the compensation data among the pixels, an operation for adjusting the luminance are performed with image data of the pixels and the compensation data stored in the LUT, and driving data that are calculated by the operation for adjusting the luminance are outputted.
Abstract:
An organic light emitting diode display includes a substrate, an organic light emitting unit disposed on the substrate and including a laminate of a first electrode, an organic emission film, and a second electrode, a first inorganic film formed on the substrate to cover the organic light emitting unit, the first inorganic film including SnO2, and a second inorganic film formed on the first inorganic film, the second inorganic film including SnO2 at a top surface and including SnO, a proportion of the SnO increasing in a direction from the top surface of the second inorganic film toward the first inorganic film.
Abstract:
A data processing method that includes: detecting a maximum data cell having a maximum value and a minimum data cell having a minimum value in a compression unit cell; converting the maximum data cell and the minimum data cell into a non-compressed data format; converting remaining data cells of the compression unit cell except for the maximum and minimum data cells into a compressed data format; and generating stream data in which the converted data cells are arranged, wherein the non-compressed data format and the compressed data format include a header field with different values and the non-compressed data format includes a data field corresponding to the value of the converted maximum or minimum data cell.
Abstract:
A method of preparing an organic light-emitting device having excellent sealing characteristics against external environment and flexibility.
Abstract:
In one aspect, a display panel and a manufacturing method of the same is provided. The display panel includes a non-emission region layer having a plurality of emission regions and a connection region that is open to connect adjacent emission regions; an organic emission layer formed in each of the plurality of emission regions; a counter electrode formed in the emission regions and the connection region; and an encapsulation layer formed on the counter electrode.
Abstract:
A liquid crystal display includes a light guide plate that guides incident light, a first point light source assembly including first point light source elements that provide the light to the light guide plate and a first support substrate having the first point light source elements, the first point light source assembly being disposed at one side of the light guide plate, a second point light source assembly including second point light source elements that provide the light to the light guide plate and a second support substrate having the second point light source elements, the second point light source assembly being disposed at the other side of the light guide plate, a liquid crystal panel assembly disposed on the light guide plate that displays image information, and a lower container that accommodates the light guide plate, first and second point light source assemblies, and liquid crystal panel assembly.
Abstract:
An organic light emitting diode display includes a substrate, a scan line on the substrate for transferring a scan signal, a data line crossing the scan line and for transferring a data signal, a driving voltage line crossing the scan line and for transferring a driving voltage, a switching thin film transistor coupled to the scan line and the data line, a driving thin film transistor coupled to a switching drain electrode of the switching thin film transistor, and an organic light emitting diode (OLED) coupled to a driving drain electrode of the driving thin film transistor, wherein a driving semiconductor layer of the driving thin film transistor is bent and in a plane substantially parallel to the substrate.
Abstract:
An organic light emitting diode display includes a substrate, a scan line on the substrate for transferring a scan signal, a data line crossing the scan line and for transferring a data signal, a driving voltage line crossing the scan line and for transferring a driving voltage, a switching thin film transistor coupled to the scan line and the data line, a driving thin film transistor coupled to a switching drain electrode of the switching thin film transistor, and an organic light emitting diode (OLED) coupled to a driving drain electrode of the driving thin film transistor, wherein a driving semiconductor layer of the driving thin film transistor is bent and in a plane substantially parallel to the substrate.
Abstract:
An organic light emitting diode display includes a substrate, a scan line on the substrate for transferring a scan signal, a data line crossing the scan line and for transferring a data signal, a driving voltage line crossing the scan line and for transferring a driving voltage, a switching thin film transistor coupled to the scan line and the data line, a driving thin film transistor coupled to a switching drain electrode of the switching thin film transistor, and an organic light emitting diode (OLED) coupled to a driving drain electrode of the driving thin film transistor, wherein a driving semiconductor layer of the driving thin film transistor is bent and in a plane substantially parallel to the substrate.