Abstract:
A screen for a trade show or like environment that is lightweight, flexible and compactible. The screen may be patterned to include a plurality of ridges extending from a top to a bottom thereof that serve to reflect projected light into a larger field of view. The screen may be concave about a horizontal axis of otherwise arranged to reflect projected light toward a desired audience. Various releasable, biased mechanisms for attaching a flexible screen member to a disassembleable frame structure are also disclosed.
Abstract:
A scooter device having a flexible, tiltable frame structure and biased direction rear wheels. The scooter may be of a type that achieves forward propelled by side-to-side movement of a user. The frame structure may include a flexible member or members and/or incorporate other flexible or moveable components to achieve desired performance. The frame structure and steering mechanism may be moveable into a more compact form for storage or transport. A brake arrangement and other features are also disclosed.
Abstract:
A scooter device propelled by side to side movement of a user that includes a frame structure through which at least a front wheel is coupled to two direction biased rear wheels. The frame structure may have a foot placement platform that extends laterally between the two rear wheels. The platform may extend over half of the distance between the rear wheels and/or be substantially continuous for that distance. Various platform embodiments and frame structures, including rigid and flexible, are disclosed, among other aspects.
Abstract:
Various embodiments of transportation devices that have at least two axes of rotation and employ ride balance based drive control are disclosed. One embodiment is a scooter type device with a platform structure movable in fore-aft. The drive motor may be provided at the platform section or drive wheel or be otherwise located. Other embodiments include inline wheeled board embodiments. Yet other embodiments include those utilizing a continuous track. The continuous track embodiments may have two drive motors, among other features.
Abstract:
An auto-balancing transportation device having a compact form. Left and right foot platform sections are coupled for fore-aft tilt angle movement relative to one another. Left and right wheels are provided under the respective foot platforms. With a rider's weight directed primarily downward onto the wheels and not onto the coupling structure, the coupling structure may have sufficient space to house the battery. In addition, more efficient and lighter weight supports and bearing arrangements may be used in the coupling structure. Various embodiments are disclosed.
Abstract:
A self-balancing load-bearing device having a load platform or like structure that may move relative to the drive wheel or wheels under the force of gravity as the device operates. The load platform may be mounted with a pendulum based structure including curved support tracks or pendulum arms or a related structure. User input of control signals may be achieved with a joystick, foot pedal, remote control or other. Various embodiments and uses are disclosed.
Abstract:
A wheeled board device with forward and rearward in-line wheel structures attached to a user platform. The forward wheel may have a forward tilt axle or be otherwise direction-biased to permit lean-based turning. The rear wheel may be singular or comprise two tires or the like and be motorized or not. The wheels are preferably large to more readily handle surface irregularities. A self-balancing wheelie mode is disclosed in one embodiment. Other embodiments include placement of the forward tilt axle within or without the envelope of the front wheel. The user platform is below the top of the rear wheel and preferably near the axis of the rear wheel, among other features.
Abstract:
Various embodiments of transportation devices that have at least two axes of rotation and employ ride balance based drive control are disclosed. One embodiment is a scooter type device with a platform structure movable in fore-aft. The drive motor may be provided at the platform section or drive wheel or be otherwise located. Other embodiments include inline wheeled board embodiments. Yet other embodiments include those utilizing a continuous track. The continuous track embodiments may have two drive motors, among other features.
Abstract:
A personal transportation device having first and second elongated foot support member that are arranged substantially in parallel and approximate to some extent the experience of skiing. The lateral distance of the foot support members may be adjusted. Biased-direction caster wheels may be provided that permit propulsion from side to side movement as well as kicking off and other propulsion techniques. Tiltable steering assemblies are disclosed that may impart a tilting of a front wheel to achieve turning. Various embodiments are disclosed.
Abstract:
Personal transportation devices having at least first and second foot platform units that are each fore-aft self-balancing. Various connector structures are disclosed that permit movement and/or positioning of the foot platform units at difference distances or spacings from one another. The spacing may be releaseably set or free moving or other. The connecting structure may maintain a parallel relationship between the two foot platform units, in the line of direction of travel of the device. The foot platform units may move laterally or longitudinally or both, depending on the embodiment, from one another.