Abstract:
A biometric recognition apparatus with reflection-shielding electrode includes a substrate, a sensing electrode layer arranged on one side of the substrate, the sensing electrode layer including a plurality of sensing electrodes and at least one suppressing electrode. The biometric recognition apparatus further includes a plurality of selection switches and conductive wires, at least a part of the selection switches and the conductive wires are electrically connected to the sensing electrodes. The biometric recognition apparatus further includes a reflection-shielding electrode layer with at least one reflection-shielding electrode and arranged on one side of the sensing electrode layer. By incorporating the reflection-shielding electrode and the suppressing electrode, the sensing sensibility and signal to noise ration can be enhanced, thus increasing the sensing distance between sensing electrode and user finger.
Abstract:
A biometric recognition apparatus with deflection electrode includes a substrate, a multi-function electrode layer including a plurality of sensing electrodes, a plurality of deflection electrodes and at least one suppressing electrode. Each of the sensing electrodes is at least partially surrounded by a corresponding deflection electrode and each of the deflection electrodes is at least partially surrounded by the suppressing electrode. The biometric recognition apparatus further includes a switching circuit layer having a plurality of selection switches and conductive wires, at least a part of the selection switches and the conductive wires are electrically connected to the sensing electrodes. By above arrangement of the sensing electrodes, the deflection electrodes and the suppressing electrode, the sensing sensibility and signal to noise ratio can be enhanced, thus increasing the sensing distance between sensing electrode and user finger.
Abstract:
A biometric feature identification device includes a substrate, an electrode layer, and a switch and trace layer. The electrode layer is arranged at one side of the substrate and has a plurality of electrodes. The switch and trace layer has a plurality of switches and a plurality of traces. The switches are provided to divide the plurality of electrodes sequentially or dynamically into at least one sensing electrode group and a plurality of deflection electrode groups corresponding thereto. Each sensing electrode group corresponds to at least two deflection electrode groups. Each sensing electrode group has at least one electrode for sensing. Each deflection electrode group has a plurality of electrodes for deflection.
Abstract:
A high-sensitivity self-capacitance in-cell touch display panel device includes a sensing electrode layer having plural sensing electrodes, a display control circuit, a touch sensing control circuit, and an amplifier with gain greater than zero. The display control circuit is powered by a first power source and connected to a first ground. The touch sensing control circuit is coupled to the sensing electrodes for performing a touch sensing. The touch sensing control circuit is powered by a second power source and connected to a second ground, wherein the first power source and the first ground are different from the second power source and the second ground. The amplifier is connected to the touch sensing control circuit and a common voltage layer. The touch sensing control circuit applies a sensing signal sensed by at least one sensing electrode to the amplifier for being amplified and applied to the common voltage layer.
Abstract:
An electrophoresis display with color filter structure includes a control substrate having a first face and a second face, a driving circuit layer, a control electrode layer, an electrophoresis layer, and an opposite substrate. The electrophoresis display further includes a color filter layer between the control substrate and the electrophoresis layer. The first face is the viewing face of the electrophoresis display.
Abstract:
An electrophoresis display with transparent control electrode includes a transparent control substrate having a first face and a second face, a driving circuit layer, a control electrode layer having a plurality of transparent control electrodes, an electrophoresis layer, and an opposite substrate. The charges of the transparent control electrodes attract the charged color particles with opposite polarity to the charges of the transparent control electrodes toward a face of the electrophoresis layer near the control electrodes, thus forming image for viewer.
Abstract:
An electrophoresis display double-side control circuit substrate includes a first control substrate having a first face and a second face, a first driving circuit layer and a first control electrode layer sequentially arranged on the second face, a second control substrate having a third face and a fourth face, a second driving circuit layer and a second control electrode layer sequentially arranged on the third face. The electrophoresis display includes a micro partition structure arranged between the first control substrate and the second control substrate and made from polymer material. The micro partition structure includes a plurality of partition walls to define chambers for accommodating a colloidal solution.
Abstract:
A circuit structure for hot-press bonding includes a first substrate, a second substrate and a conductive adhesive layer. The circuit structure further includes a first conductive layer having a plurality of connection electrodes arranged on the first substrate, a second conductive layer including a plurality of backup electrodes respectively corresponding to the connection electrodes, an insulating layer arranged between the first conductive layer and the second conductive layer, and a plurality of conductive via arranged in the insulating layer and connected to corresponding connection electrodes and backup electrodes to provide current conduction paths therebetween, thus provide additional conduction path for the connection electrodes even the connection electrodes have fracture and enhance yield and connection reliability.
Abstract:
A touch control method is provided. The method includes: providing a touch device with multiple touch electrodes; determining whether an object is located in a sensing distance; detecting a sensing group sensing the object if the determination is yes; determining whether an electrode amount in the electrode group is between a first value and a second value; determining whether a sensing time of a predetermined proportion of the touch electrodes in the sensing group is equal to or greater than a predetermined time; executing a fingerprint recognition mode if the electrode amount is between the first value and the second value, and the sensing time is equal to or greater than the predetermined time; executing a touch operation mode if the electrode amount is less than the first value or greater than the second value, or the sensing time is less than the predetermined time.
Abstract:
The present invention provides a fingerprint detection device, including: a substrate, a switch circuit layer, a sensing electrode layer, a heat dissipating antistatic structure layer, and a protective layer. The switch circuit layer is disposed on the substrate. The sensing electrode layer is disposed on the switch circuit layer, and includes a plurality of sensing electrodes. The heat dissipating antistatic structure layer is disposed on the sensing electrode layer, and includes a conductive mesh and a plurality of shunt heat sinks. The conductive mesh is formed with a plurality of mesh openings, and configured to shunt charges. The shunt heat sinks are adjacent to the conductive mesh, and correspond to the sensing electrodes. The shunt heat sinks are electrically insulated from each other, electrically insulated from the conductive mesh, and electrically insulated from the sensing electrodes. The protective layer is disposed on the heat dissipating antistatic structure layer.