摘要:
A method and apparatus for optical wavelength routing separates even and odd optical channels from an input WDM signal. The input beam is first converted to at least one pair of orthogonally-polarized beams. A split-mirror resonator has a front mirror with two regions having different reflectivities, and a reflective back mirror spaced a predetermined distance behind the front mirror. Each of the orthogonally-polarized beams is incident on a corresponding region of the front mirror of the split-mirror resonator. A portion of each beam is reflected by the front mirror, which the remainder of each beam enters the resonator cavity where it is reflected by the back mirror back through the front mirror. The group delay of each reflected beam is strongly dependent on wavelength. The two reflected beams from the resonator are combined and interfere in a birefringent element (e.g., a beam displacer or waveplates) to produce a beam having mixed polarization as a function of wavelength. The polarized components of this beam are separated by a polarization-dependent routing element (e.g., a polarized beamsplitter) to produce two output beams containing complimentary subsets of the input optical spectrum (e.g., even optical channels are routed to output port A and odd optical channels are routed to output port B).
摘要:
An electromagnetically controlled optical switch having a plurality of optical inputs. An optical signal at each input is spatially decomposed into two coparallel, orthogonally polarized beams by a birefringent element. An array of field-controlled polarization rotators are positioned in the paths of the decomposed light beams so that the polarization of the emergent beam pairs are set to be at one of the orthogonal states (i.e., both beams are either vertical or horizontally polarized). A following birefringent element spatially routes the light beam pairs based upon their polarization. A second array of polarization rotators follows the second birefringent element and is set to be in the opposite state from the first array, such that the emergent beams are orthogonal to their input states before they entered the first polarization rotator. The beams are combined by a birefringent element to form a plurality of combined beams that are coupled to output ports.
摘要:
A multi-wavelength optical transmission system includes a plurality of primary optical transmitters, each being configured to provide directly modulated analog optical signals at non-uniformly spaced apart wavelengths. An optical multiplexer having a plurality of optical input ports receives the analog optical signals from each of the plurality of primary optical transmitters and provides a wavelength division multiplexed signal over an optical fiber coupled at an output thereof. A spare optical transmitter is coupled to an input port of the optical multiplexer and, in response to detecting failure of a failed one of the plurality of primary optical transmitters, is tuned to provide a directly modulated analog optical signal at a spare wavelength that is selected as to be non-uniformly spaced relative to at least some of the non-uniformly spaced apart wavelengths according to tuning data.
摘要:
A multi-wavelength optical transmission system includes a plurality of primary optical transmitters, each being configured to provide directly modulated analog optical signals at non-uniformly spaced apart wavelengths. An optical multiplexer having a plurality of optical input ports receives the analog optical signals from each of the plurality of primary optical transmitters and provides a wavelength division multiplexed signal over an optical fiber coupled at an output thereof. A spare optical transmitter is coupled to an input port of the optical multiplexer and, in response to detecting failure of a failed one of the plurality of primary optical transmitters, is tuned to provide a directly modulated analog optical signal at a spare wavelength that is selected as to be non-uniformly spaced relative to at least some of the non-uniformly spaced apart wavelengths according to tuning data.
摘要:
An optical wavelength router separates an input signal into two complementary output signals. A beamsplitter of the wavelength router separates the input signal into a first beam and a second beam. A first resonator reflects the first beam producing a group delay that is dependent on wavelength. Similarly, a second resonator reflects the second beam. The center wavelength of the second resonator is offset relative to that of the first resonator by one half of the free spectral range of the first resonator, so that the resonance frequencies of the second resonator are matched to the anti-resonance frequencies of the first resonator. The beams reflected by the resonators interfere within the beamsplitter to produce two output signals containing complementary subsets of the spectrum of the input signal (e.g., even optical channels are routed to a first output port and the odd optical channels are routed to a second output port).
摘要:
A method and apparatus for optical wavelength routing separates even and odd optical channels from an input WDM signal. The input beam is first converted to at least one pair of orthogonally-polarized beams. A split-mirror resonator has a front mirror with two regions having different reflectivities, and a reflective back mirror spaced a predetermined distance behind the front mirror. Each of the orthogonally-polarized beams is incident on a corresponding region of the front mirror of the split-mirror resonator. A portion of each beam is reflected by the front mirror, while the remainder of each beam enters the resonator cavity where it is reflected by the back mirror back through the front mirror. The group delay of each reflected beam is strongly dependent on wavelength. The two reflected beams from the resonator are combined and interfere in a birefringent element (e.g., a beam displacer or waveplates) to produce a beam having mixed polarization as a function of wavelength. The polarized components of this beam are separated by a polarization-dependent routing element (e.g., a polarized beamsplitter) to produce two output beams containing complementary subsets of the input optical spectrum (e.g., even optical channels are routed to output port A and odd optical channels are routed to output port B).
摘要:
An optical wavelength router separates an input signal into two complementary output signals. A beamsplitter of the wavelength router separates the input signal into a first beam and a second beam. A first resonator reflects the first beam producing a group delay that is dependent on wavelength. Similarly, a second resonator reflects the second beam. The center wavelength of the second resonator is offset relative to that of the first resonator by one half of the free spectral range of the first resonator, so that the resonance frequencies of the second resonator are matched to the anti-resonance frequencies of the first resonator. The beams reflected by the resonators interfere within the beamsplitter to produce two output signals containing complementary subsets of the spectrum of the input signal (e.g., even optical channels are routed to a first output port and the odd optical channels are routed to a second output port).
摘要:
In all-optical networks, optical switching and routing become the most important issues for interconnecting the transport network layers. This invention describes a novel tunable optical add/drop filter for the all-optical wavelength-division-multiplexing (WDM) network applications. This filter can add or drop part of the high transmission capacity signals of a WDM link. It can be used to decentralized access point in the access network or as small core network node to realizing branching points in the network topology. It works in both wavelength and space domains. It has the advantages of: 1) High throughput and low voltage operation; 2) Wide tuning range and therefore, high channel capacity; 3) High isolation and high directivity between input and output ports; 4) Compact device packaging is possible as compares to the conventional grating and mechanical switching type of add/drop filter; 5) Multiple ports add/drop tunable filters can be realized with this invention to interconnect multiple WDM networks. This novel add/drop filter can be used in various WDM topologies. It enhances the performance of the conventional tunable filter by re-routing the rejected wavelengths back to network, which not only save the precious optical energy, but also cut down the return loss of the device.
摘要:
In all-optical networks, optical switching and routing become the most important issues for interconnecting the transport network layers. This invention describes a novel tunable optical add/drop filter for the all-optical wavelength-division-multiplexing (WDM) network applications. This filter can add or drop part of the high transmission capacity signals of a WDM link. It can be used to decentralized access point in the access network or as small core network node to realizing branching points in the network topology. It works in both wavelength and space domains. It has the advantages of: 1) High throughput and low voltage operation; 2) Wide tuning range and therefore, high channel capacity; 3) High isolation and high directivity between input and output ports; 4) Compact device packaging is possible as compares to the conventional grating and mechanical switching type of add/drop filter; 5) Multiple ports add/drop tunable filters can be realized with this invention to interconnect multiple WDM networks. This novel add/drop filter can be used in various WDM topologies. It enhances the performance of the conventional tunable filter by re-routing the rejected wavelengths back to network, which not only save the precious optical energy, but also cut down the return loss of the device.
摘要:
An example method includes receiving radio frequency (RF) signals from a cable modem termination system (CMTS) in a small form factor pluggable optical transmitter; converting the RF signals to optical signals in the small form factor pluggable optical transmitter; and transmitting, by the small form factor pluggable optical transmitter, the optical signals on a network. More specific embodiments can include RF signals that are modulated, where a modulation error ratio (MER) of the RF signal varies substantially linearly with Carrier to Composite Noise (CCN), and the converting is implemented by a laser transmitter. Other, more specific, embodiments include routing the RF signals through a pre-distortion RF amplifier RF variable attenuator, and coupling the optical transmitter to a chassis of the CMTS.