Abstract:
A method of forming a metal component having different regions containing different grain sizes and in porosities is by additive manufacturing. The method includes spreading a layer of starting powder on a temperature controlled moveable platform in a heated chamber with atmosphere and temperature control. Selected areas of the powder are melted and solidified with a computer controlled focused energy beam. The cooled platform is then indexed down and the process repeated. The grain size of the melted and solidified region can be controlled by the cooling rate during solidification which, in turn is controlled by the temperature of the chamber and the temperature of the cooled moveable platform.
Abstract:
A build plate for an additive manufacturing system is disclosed. The build plate includes a support structure, a sub-plate, and one or more transducers. The support structure is configured to support a stack of sintered layers of a pulverant material. Further, the support structure extends orthogonally to a build direction. The sub-plate is arranged along the support structure, and defines a transducer cavity. One or more transducers are arranged in the transducer cavities. The one or more transducers are operable to cause vibration of the support structure and the stack parallel to the build direction. Such vibration relieves internal stresses caused by sintering of the stack.
Abstract:
A Blade Outer Air Seal (BOAS) includes a body manufactured of a metal alloy, the body includes a face opposite a forward interface and an aft interface, the face includes a cavity. A non-metallic insert within the cavity such that the insert is flush with the face.