Abstract:
A method of signal transmission according to one embodiment includes requesting a packet data serving node to filter a specified traffic flow from among a stream of packets. The method also includes requesting a radio access network to provide an indicated quality-of-service (QoS) treatment for the flow over a wireless air interface. The method further includes rescinding the request to filter or the request to provide a QoS treatment in response to a failure of the other request.
Abstract:
A wireless network assigns a single IP address to the wireless device, which assigns this IP address over to a TE2 device coupled to the wireless device. The wireless device derives a private IP address for communication with the TE2 device. The wireless device forwards packets exchanged between the TE2 device and the wireless network using the single IP address. The wireless device exchanges packets with the TE2 device by (1) using the private IP address for outbound packets sent to the TE2 device and (2) performing either address-based routing or packet filtering on inbound packets received from the TE2 device. The wireless device exchanges packets with the wireless network by (1) using the single IP address for outbound packets sent to the wireless network and (2) performing packet filtering on inbound packets received from the wireless network.
Abstract:
A single USB interrupt endpoint is usable by two different active logical devices in a USB device. If a first logical device is to interrupt a USB host, then the first logical device writes a notification into the endpoint. The notification carries a number that identifies a first device object. If, however, a second logical device is to interrupt the host, then the second logical device writes a notification into the endpoint, but the notification carries a number that identifies a second device object. The USB host reads the notification. In one example, if the number and a Device ID indicate that the notification is for the first object, then the first object processes the notification. If the number and Device ID indicate that the notification is for the second object, then the first object notifies the second object so that the second object processes the notification.
Abstract:
Systems and methodologies are described that facilitate providing quality of service (QOS) functionality on a host device or tethered processor to conserve resources on a network device. In particular, the host device/tethered processor can classify QOS data and manage QOS flows, transmitting data by flow to the network device. The data from the QOS flows can be tagged to identify the flow and/or characteristics thereof allowing the wireless device to simply route the data to its respective flow. Thus, the network device is saved from such classification and flow management freeing resources to provide increased performance and decreased power consumption.