Abstract:
The invention comprises intensity control of a charged particle beam acceleration, extraction, and/or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Particularly, intensity of a charged particle stream of a synchrotron is described. Intensity control is described in combination with turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, and extraction elements of the synchrotron. The system reduces the overall size of the synchrotron, provides a tightly controlled proton beam, directly reduces the size of required magnetic fields, directly reduces required operating power, and allows continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Abstract:
The invention comprises a charged particle beam acceleration and/or extraction method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Novel design features of a synchrotron are described. Particularly, turning magnets, edge focusing magnets, and extraction elements are described that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allow continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Abstract:
The invention comprises a charged particle cancer therapy system or synchrotron system using a single power supply electrically connected to a plurality of magnet sections to provide a uniform current to a plurality of magnets at a given period in time. Optionally, one or more switches introduce a corresponding one or more resistors into a circuit linking the power supply to a magnet or an inductor during an applied power recovery phase between acceleration cycles of the synchrotron, which reduces time of reduction in power from an active applied power to a power suitable for use with a subsequent injection of charged particles into the synchrotron.
Abstract:
The invention comprises an X-ray system that is orientated to provide X-ray images of a patient in the same orientation as viewed by a proton therapy beam, is synchronized with patient respiration, is operable on a patient positioned for proton therapy, and does not interfere with a proton beam treatment path. Preferably, the synchronized system is used in conjunction with a negative ion beam source, synchrotron, and/or targeting method apparatus to provide an X-ray timed with patient respiration and performed immediately prior to and/or concurrently with particle beam therapy irradiation to ensure targeted and controlled delivery of energy relative to a patient position resulting in efficient, precise, and/or accurate noninvasive, in-vivo treatment of a solid cancerous tumor with minimization of damage to surrounding healthy tissue in a patient using the proton beam position verification system.
Abstract:
The invention comprises an X-ray method and apparatus used in conjunction with charged particle or proton beam radiation therapy of cancerous tumors. The system uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The system creates an electron beam that strikes an X-ray generation source where the X-ray generation source is located proximate to the proton beam path. By generating the X-rays near the proton beam path, an X-ray path that is essentially the proton beam path is created. Using the generated X-rays, the system collects X-ray images of a localized body tissue region about a cancerous tumor. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the proton beam path to accurately and precisely target the tumor, and/or in system verification and validation.
Abstract:
The invention comprises a negative ion source method and apparatus used as part of an ion beam injection system, which is used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. The negative ion source preferably includes an inlet port for injection of hydrogen gas into a high temperature plasma chamber. In one embodiment, the plasma chamber includes a magnetic material, which provides a magnetic field barrier between the high temperature plasma chamber and a low temperature plasma region on the opposite side of the magnetic field barrier. An extraction pulse is applied to a negative ion extraction electrode to pull the negative ion beam into a negative ion beam path, which proceeds through a first partial vacuum system, through an ion beam focusing system, into the tandem accelerator, and into a synchrotron.
Abstract:
The invention relates to treatment of solid cancers and more particularly to a method and apparatus correlating proton beam intensity with proton delivery efficiency, optionally in a raster beam scanning system. The system induces betatron oscillation on the proton beam causing the beam to traverse an extraction material resulting in slowed protons and a feedback current proportional to the proton flux. A controller receives the desired intensity from an irradiation plan and the feedback current and adjusts the radio-frequency field in the radio-frequency cavity system to yield an intensity of the proton beam that matches the desired intensity from the irradiation plan. Preferably, the intensity of the proton beam correlates with radiation delivery efficiency. The system preferably operates in conjunction with a multi-field charged particle cancer therapy system, with charged particle beam injection, particle beam acceleration, multi-axis charged particle beam control, and/or targeting methods and apparatus.
Abstract:
The invention comprises a negative ion beam source vacuum method and apparatus used as part of an ion beam injection system, which is used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. The negative ion beam source contains a vacuum chamber isolated by a vacuum barrier from the vacuum tube of the synchrotron. The negative ion beam source vacuum system preferably includes: a first pump turbo molecular pump, a large holding volume, and a semi-continuously operating pump. By only pumping ion beam source vacuum chamber and by only semi-continuously operating the ion beam source vacuum based on sensor readings about the holding volume, the lifetime of the semi-continuously operating pump is extended.
Abstract:
The invention comprises a charged particle beam extraction method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. The system uses a radio-frequency (RF) cavity system to induce betatron oscillation of a charged particle stream. Sufficient amplitude modulation of the charged particle stream causes the charged particle stream to hit a material, such as a foil. The foil decreases the energy of the charged particle stream, which decreases a radius of curvature of the charged particle stream in the synchrotron sufficiently to allow a physical separation of the reduced energy charged particle stream from the original charged particle stream. The physically separated charged particle stream is then removed from the system by use of an applied field and deflector.
Abstract:
The invention comprises a laying, semi-vertical, or seated patient positioning, alignment, and/or control method and apparatus used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. Patient positioning constraints are used to maintain the patient in a treatment position, including one or more of: a seat support, a back support, a head support, an arm support, a knee support, and a foot support. One or more of the positioning constraints are movable and/or under computer control for rapid positioning and/or immobilization of the patient. The system optionally uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the proton beam path to accurately and precisely target the tumor, and/or in system verification and validation.