Abstract:
An automatic gate operator includes an electric drive motor coupled by a drive train to a movable gate, and includes provisions for sensing an actual or impending obstruction or blockage of the movement of the gate by a human, object, or animal, for example. In response to such an actual or impending blocking of the gate's movement, the drive motor is shut off and the gate is braked to a stop. Then the gate is reversed to move a short distance away from the actual or impending blockage or obstruction, and is braked again to a stop. Next, the gate is freed from its connection with the drive motor, allowing manual movement of the gate to allow clearance of the actual or impending blockage or obstruction from the path of the gate. This stop-reverse-stop-release sequence of movements for the gate may release any entrapped person or object which may have been contacted by the moving gate. Also, after the gate is released for free movement it can be moved manually. This release of the gate allows an entangled person, object, or animal to free themselves, or to be freed by a bystander, for example. The gate operator also includes a control circuit which senses traffic conditions and responds by incrementing or decrementing a timer which controls a pause interval of the gate in its fully-opened position.
Abstract:
An access control apparatus with an outer housing including a door and a plurality of outer keys, a substantially closed inner housing that is removably mounted within the outer housing, and an electronic communication device within the inner housing which is operably connected to a telephone system and to the outer keys.
Abstract:
A powered gate operator includes an electric motor coupled by a drive train to a movable gate in order to drive the gate between opened and closed positions. The gate may also be moved manually between these opened and closed positions, or may be moved by powered operation of the gate operator under manual input control of velocity and acceleration of the gate. The gate operator includes a control system with a learning mode allowing a human to move the gate either manually or under powered operation with manual control, and during which the control system learns desired accelerations, deceleration's, pauses, etc., along with start and finish positions for the gate movement in each direction of movement for the gate between opened and closed positions. Thereafter, during powered operation of the gate by the operator the desired movement profile taught by a human to the operator during a learning mode experience is replicated. In the event that no preferred gate movement profile is available to the gate operator from a learning mode experience, it uses a default gate movement profile. Various default profiles of gate movement may be stored in memory and may be selected by an owner of the gate.