摘要:
The invention relates to a compact electronic camera which enables an electronic image to be displayed on a two-dimensional display element while it is phototaken or after it has been phototaken, so that the image can be magnified and displayed by a compact magnifying optical system constructed of a curved reflecting mirror to view a phototaken image of high precision. An electronic camera for photoelectrically converting a subject image formed by a phototaking optical system 2 into an electronic image to be recorded comprises a two-dimensional display element 4 for displaying an electronic image during or after phototaking and a magnifying optical system 5 for magnifying an image displayed on the two-dimensional display element 4 in the form of a virtual image. The magnifying optical system 5 is constructed of at least one curved reflecting mirror 26 and a surface 28 having a combined reflecting and transmitting action.
摘要:
The invention relates to an optical system adapted to take or project high-definition images with well corrected aberrations for the purpose of taking images from a 360° panoramic scene on a cylindrical, conical or other three-dimensional surface or project such a three-dimensional display surface onto a 360° field of view. Images from the 360° panoramic scene are formed on a rotationally symmetric, three-dimensional image surface 3. The optical system comprises at least one rotationally symmetric reflective surface 2, the position of an entrance pupil 4s with respect to a sagittal section is different from the position of an exit pupil 4m with respect to a meridional section.
摘要:
A projection optical apparatus is provided that is fast and of satisfactory illumination efficiency albeit being of simple construction and compact size including at least three projection optical systems for magnifying and projecting an image appearing on a display device, and further including a concave mirror for projecting exit pupils of the projection optical systems onto a viewer side and a diffusing plate comprising a transmission hologram, which is located near to images projected through the projection optical systems for magnifying the images of the exit pupils of the projection optical system upon projected by the concave mirror. The image of the exit pupil of each projection optical system projected by the concave mirror and magnified through the diffusing plate comprising a transmission hologram is projected in a mutually, at least partially overlapping fashion.
摘要:
The invention relates to a projection screen and a projection type display device, wherein projection light projected through a single projector is intensively diffused into at least two areas of view, each having a relatively narrow extent, so that the same image can be simultaneously viewed with both eyes or by at least two viewers. The projection screen 1 comprises a plurality of Fresnel concave mirrors 2L and 2R superposed on the same substrate in a mutually decentered fashion, and a diffusing plate is located on the side of the projection screen 1 on which projection light is incident or at which projection light is reflected.
摘要:
The present invention relates to a high-performance image-forming optical system made compact and thin by folding an optical path using reflecting surfaces arranged to minimize the number of reflections. A prism member 10 has a first entrance surface 11, first to fourth reflecting surfaces 12 to 15, and a first exit surface 16. An optical path incident on the first reflecting surface 12 and an optical path reflected from the second reflecting surface 13 form intersecting optical paths. An optical path incident on the third reflecting surface 14 and an optical path reflected from the fourth reflecting surface 15 form intersecting optical paths. At least either one of the first reflecting surface 12 and the second reflecting surface 13 and at least either one of the third reflecting surface 14 and the fourth reflecting surface 15 have a rotationally asymmetric curved surface configuration that gives a power to a light beam and corrects aberrations due to decentration. An intermediate image plane is formed between the first reflecting surface 12 and the fourth reflecting surface 15.
摘要:
An optical path splitting element for splitting a light beam from a single object into at least two optical paths is made compact in size by using a three-dimensional optical system and given a power to reduce the number of components thereof. An image display apparatus uses the optical path splitting element. The optical path splitting element has a prism member having an entrance surface through which the light beam from the object enters the prism member, at least one reflecting surface reflecting the light beam within the prism member, and an exit surface through which the light beam exits the prism member. The prism member has at least one rotationally asymmetric surface. At least one optical functional surface is a discontinuous surface formed from at least two surfaces adjacent to each other. The other optical functional surfaces are common to the at least two optical paths.
摘要:
A compact, bright and high-performance viewing optical system and an image display apparatus using the same. The viewing optical system uses an ocular optical system, which is formed from a decentered prism, and a reflection type image display device. The image display device has a light source and an illuminating light guide prism for guiding a light beam from the light source so that the light beam is applied to the display surface from the front side thereof. The ocular optical system includes a prism having an entrance surface through which a light beam reflected from the display surface enters the prism after passing through the illuminating light guide prism. The prism further has a reflecting surface and an exit surface through which the light beam exits from the prism. The reflecting surface is decentered with respect to the optical axis and has a rotationally asymmetric curved surface configuration that corrects decentration aberrations due to the decentration of the reflecting surface and gives a power to the light beam. The spacing between the entrance surface of the prism and the display surface satisfies a predetermined condition to lead the image to the pupil position.
摘要:
A compact optical system for microscope, endscope and binoculars capable of providing a clear image of minimal distortion even at a wide field angle. The optical system is a decentered optical system. Curved surfaces constituting the optical system include at least one rotationally asymmetric surface having no axis of rotational symmetry in or out of the surface. To correct rotationally asymmetric aberrations due to decentration by the rotationally asymmetric surface, the following condition is satisfied: −1000
摘要:
A high-performance image-forming optical system made compact and thin by folding an optical path using reflecting surfaces arranged to minimize the number of reflections. The image-forming optical system has a first prism placed on the object side and a second prism placed on the image side and does not form an intermediate image. The first and second prisms each have a first surface through which a light beam enters the prism, a second surface reflecting the incident light beam in the prism, a third surface reflecting the reflected light beam in the prism, and a fourth surface through which the light beam exits from the prism. At least one of the second and third surfaces has a rotationally asymmetric curved surface configuration that gives a power to a light beam and corrects aberrations due to decentration. Any optical element that gives a refracting power contributing to the image-forming action of a light beam is not placed between the second prism and an image formed by the image-forming optical system.
摘要:
An object of the invention is to provide a compact yet high-performance finder optical system comprising an image inversion optical subsystem having a decentered reflecting surface, which enables a bright, distortion-free image to be observed. This object is achieved by locating a rotationally asymmetric surface in the image inversion optical subsystem forming part of the finder optical system.