Abstract:
Methods and systems for making effective use of system resources. A plurality of requests for access to a resource are received. Each request has an associated group of features. The group of features for each request is analyzed to collect observations about the plurality of requests. A function to predict an outcome of a subsequent request is generated based on the observations. Resources are allocated to service the subsequent request based on the function.
Abstract:
In an example, a database system may be configured to validate relational database instructions using a plurality of validators. In some examples, validation may be pre-production for relational database instructions based on simulated user inputs and/or file, such as plan files (e.g., PL/SQL (procedural language/structured query language) files). In some examples, validation may be in production for relational database instructions based on system views of a database engine.
Abstract:
Reverse database query mapping. A database query to be executed on a computing platform against a database managed by the computing platform is received. Query mapping information is stored in a memory system accessible to the one or more processors. A source query corresponding to a query identifier is retrieved in response to statistical analysis. One or more potential indexes are generated for use with the source query, wherein at least one of the one or more potential indexes can function to improve performance of the source query.
Abstract:
Techniques and architectures to provide multiple application servers each having at least one connection agent and at least one enabler agent and at least one database organized as multiple nodes. An error condition between a first connection agent and a first database node is detected. The first connection agent indicates that the first database node is unavailable to stop attempts to access the first database node by a first application server. A first enabler agent periodically checks availability of the first database node. The first database node is indicated as available in response to a pre-selected number of successful attempts to contact the first database node with the first enabler agent. The first database node is accessed with the application server in response to the indication that the first database node is available.
Abstract:
Techniques are disclosed relating to creating an index for a database system. In one embodiment, a database system stores data within a plurality of fields in a data table, a subset of the data being associated with a particular one of the plurality of fields. The database system receives a request to index the data table based on the particular field and analyzes the subset of the data. In response to determining, based on the analyzing, that one or more duplicate values are present in the subset of data, the database system sets, in an index table having the particular field, an indication identifying which entries of the index table have a duplicate value for the particular field, and returns a response to the request that specifies the one or more duplicate values. In some embodiments, the response includes a user interface displaying one or more duplicates values.
Abstract:
In accordance with embodiments, there are provided mechanisms and methods for query optimization in a database system. These mechanisms and methods for query optimization in a database system can enable embodiments to optimize OR expression filters referencing different logical tables. The ability of embodiments to optimize OR expression filters referencing different logical tables can enable optimization that is dynamic and specific to the particular tenant for whom the query is run and improve the performance and efficiency of the database system in response to query requests.
Abstract:
Methods and systems for query optimization for a multi-tenant database system are provided. Some embodiments comprise receiving at a network interface of a server in a multi-tenant database system an original query transmitted to the multi-tenant database system by a user associated with a tenant, wherein the original query is associated with data accessible by the tenant, and wherein the multi-tenant database system includes at least a first index and a second index. Metadata associated with the data is retrieved, wherein at least a portion of the data is stored in a common table within the multi-tenant database system. A tenant-selective query syntax is determined by analyzing at least one of metadata generated from information about the tenant or metadata generated from the data accessible by the tenant. An improved query is then generated using the query syntax, wherein the improved query is based at least in part upon the original query and a result of a join between a first number of rows associated with the first index and a second number of rows associated with the second index.
Abstract:
In accordance with embodiments, there are provided mechanisms and methods for synchronizing a server and an on-demand database service. These mechanisms and methods for synchronizing a server and an on-demand database service can enable embodiments to synchronize a larger amount of data. The ability of embodiments to provide such feature can enable more effective synchronization of a user-level sharing entity database with a multi-user on-demand database service.
Abstract:
Methods and systems for query optimization for a multi-tenant database system are provided. Some embodiments comprise receiving at a network interface of a server in a multi-tenant database system an original query transmitted to the multi-tenant database system by a user associated with a tenant, wherein the original query is associated with data accessible by the tenant, and wherein the multi-tenant database system includes at least a first index and a second index. Metadata associated with the data is retrieved, wherein at least a portion of the data is stored in a common table within the multi-tenant database system. A tenant-selective query syntax is determined by analyzing at least one of metadata generated from information about the tenant or metadata generated from the data accessible by the tenant. An improved query is then generated using the query syntax, wherein the improved query is based at least in part upon the original query and a result of a join between a first number of rows associated with the first index and a second number of rows associated with the second index.
Abstract:
Techniques and structures for tuning database queries. Actual statistics associated with data stored are retrieved from at least one memory device. The data is associated with one or more tenants of the multi-tenant database system. The actual statistics include at least one type of statistic maintained for the data. A subset of the actual statistics is selected based on a data trait targeted for optimization. A statistical value is calculated for each actual statistic from the subset of actual statistics across one or more tenants having the data trait targeted for optimization. An optimal query plan is determined based on the original query and the calculated statistical values.