Abstract:
A device including a first plate configured to interface with a first bone structure of a joint; a second plate configured to interface with a second bone structure of the joint opposite the first bone structure; and at least one mechanical actuation mechanism disposed between the first plate and the second plate and configured to apply a distraction force along an axis between the first plate and the second plate so as to urge the first plate and the second plate away from one another, wherein the device is configured so as to have a range of motion ranging from a minimum distance between the first plate and the second plate to a maximum distance between the first plate and the second plate, and wherein the mechanical actuation mechanism is configured such that the distraction force is substantially constant distraction force across the range of motion.
Abstract:
A prosthesis system of the present invention includes a monoblock stem extension including a proximal portion having a first neutral axis; and a distal portion defined by a longitudinal cylindrical shaft having a second neutral axis, wherein the second neutral axis is parallel and offset by a distance α from the first neutral axis; and an eccentric bushing arranged coaxial around the cylindrical shaft of the monoblock stem extension, the eccentric bushing including an external cylindrical shaft having a third neutral axis; and an internal cylinder having a fourth neutral axis that is substantially co-linear with the second neutral axis of the monoblock stem extension, wherein the third neutral axis is parallel and offset by a distance β from the fourth neutral axis.
Abstract:
In some embodiments, an intervertebral implant may include a body including a superior and an inferior surface. The implant may include a first channel extending from an anterior end towards the posterior end of the body. The implant may include a first anchor channel The implant may include a first guide member positionable in the first channel The implant may include a first anchor. When the first guide member moves from a first position to a second position the first anchor may be conveyed through the first anchor channel and couple the body to an adjacent vertebra.
Abstract:
In some embodiments, provided is an apparatus including a first elongated member, the first elongated member including a distal end and a proximal end. The distal end of the first elongated member is coupled to a first bone portion during use. The apparatus further includes a second elongated member including a distal end and a proximal end. The distal end of the second elongated member is coupled to a second bone portion during use. The proximal end of the second elongated member comprises a surface that is shaped complementary to a surface of the proximal end of the first elongated member. The apparatus still further includes a locking mechanism coupling the proximal end of the first elongated member to the proximal end of the second elongated member. The locking mechanism is adjustable from an unlocked position to a locked position such that, when the locking mechanism is in the unlocked position, the first elongated member is angularly movable relative to the second elongated member, and when the locking mechanism is in the locked position, the complementary shaped surfaces of the first elongated member and the second elongated member are directly connected and the relative angular position of the first elongated member and the second elongated member is substantially fixed.
Abstract:
Methods, systems, devices and tools for placing bone stabilization components in a patient are provided. The systems and devices have a reduced number of discrete components that allow placement through small incisions and tubes. More particularly, the present invention is directed to systems and methods of treating the spine, which eliminate pain and enable spinal motion, which effectively mimics that of a normally functioning spine. Methods are also provided for stabilizing the spine and for implanting the subject systems.
Abstract:
A dynamic bone stabilization system is provided. The system may be placed through small incisions and tubes. The system provides systems and methods of treating the spine, which eliminate pain and enable spinal motion, which effectively mimics that of a normally functioning spine. Methods are also provided for stabilizing the spine and for implanting the subject systems.
Abstract:
In one embodiment of the present invention a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a concave superior surface on a tibial tray and a convex inferior surface on a tibial insert. In another embodiment of the present invention a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a convex superior surface on a tibial tray and a concave inferior surface on a tibial insert. In another embodiment of the present invention a mobile bearing knee prosthesis may include a biconcave interface (e.g., having a “wave” like surface geometry). This “wave” like surface geometry may be at the interface between a tibial insert and a tibial tray in the mobile bearing knee (as opposed to the interface between the tibial insert and a femoral component).
Abstract:
A handling tool for coupling to a cutting guide includes a substantially elongate first end shaped to be grasped by human hand. The tool includes at least two mating tines, disposed at a second end of the tool. The mating tines are biased to move toward each other and are forced apart from each other by a cam portioned therebetween. The mating tines each include a mating means for mating the tool with the cutting guide.