Abstract:
This disclosure describes devices and methods for performing spinal surgical procedures. In some embodiments, a method may include positioning at least a portion of at least one surgical instrument in at least one naturally occurring orifice of a human by a user. In some embodiments, a method may include accessing an interior space of the human using at least one of the surgical instruments. The method may include performing at least a portion of a spinal surgical procedure using at least one of the surgical instruments positioned in at least one of the naturally occurring orifices of the human. The method may include removing at least one of the surgical instruments from at least one of the naturally occurring orifices upon completion of at least a portion of the spinal surgical procedure.
Abstract:
In some embodiments, an intervertebral implant may include a body including a superior and an inferior surface. The implant may include a first channel extending from an anterior end towards the posterior end of the body. The implant may include a first anchor channel. The implant may include a first guide member positionable in the first channel. The implant may include a first anchor. When the first guide member moves from a first position to a second position the first anchor may be conveyed through the first anchor channel and couple the body to an adjacent vertebra. In some embodiments, the implant may include a first locking mechanism which inhibits, during use, the first guide member from moving from the second position to the first position upon activation of the first locking mechanism.
Abstract:
In some embodiments, an intervertebral implant may include a body including a superior and an inferior surface. The implant may include a first channel extending from an anterior end towards the posterior end of the body. The implant may include a first anchor channel The implant may include a first guide member positionable in the first channel The implant may include a first anchor. When the first guide member moves from a first position to a second position the first anchor may be conveyed through the first anchor channel and couple the body to an adjacent vertebra.
Abstract:
Provided is an intervertebral implant to be implanted within an intervertebral space between endplates of adjacent vertebra during use. The implant includes an upper member having an inferior surface including an upper guide track and a superior surface to contact an endplate of an upper one of the adjacent vertebra during use, a lower member having a superior surface including a lower guide track and an inferior surface to contact an endplate of a lower one of the adjacent vertebra during use, and an insert having a superior surface including an upper guide rail to engage the upper guide track during use and an inferior surface including a lower guide rail to engage the lower guide track during use. Engagement of the upper and lower guide rails with the upper and lower guide tracks, respectively, guides insertion of the insert between the upper and lower members during use, and insertion of the insert between the upper and lower members facilitates expansion of the intervertebral implant.
Abstract:
In some embodiments, an intervertebral implant may include a body including a superior and an inferior surface. The implant may include a first channel extending from an anterior end towards the posterior end of the body. The implant may include a first anchor channel The implant may include a first guide member positionable in the first channel The implant may include a first anchor. When the first guide member moves from a first position to a second position the first anchor may be conveyed through the first anchor channel and couple the body to an adjacent vertebra.
Abstract:
This disclosure describes devices and methods for performing spinal surgical procedures. In some embodiments, a method may include positioning at least a portion of at least one surgical instrument in at least one naturally occurring orifice of a human by a user. In some embodiments, a method may include accessing an interior space of the human using at least one of the surgical instruments. The method may include performing at least a portion of a spinal surgical procedure using at least one of the surgical instruments positioned in at least one of the naturally occurring orifices of the human. The method may include removing at least one of the surgical instruments from at least one of the naturally occurring orifices upon completion of at least a portion of the spinal surgical procedure.
Abstract:
Provided is an intervertebral implant to be implanted within an intervertebral space between endplates of adjacent vertebra during use. The implant includes an upper member having an inferior surface including an upper guide track and a superior surface to contact an endplate of an upper one of the adjacent vertebra during use, a lower member having a superior surface including a lower guide track and an inferior surface to contact an endplate of a lower one of the adjacent vertebra during use, and an insert having a superior surface including an upper guide rail to engage the upper guide track during use and an inferior surface including a lower guide rail to engage the lower guide track during use. Engagement of the upper and lower guide rails with the upper and lower guide tracks, respectively, guides insertion of the insert between the upper and lower members during use, and insertion of the insert between the upper and lower members facilitates expansion of the intervertebral implant.