Abstract:
A coke plant includes multiple coke ovens where each coke oven is adapted to produce exhaust gases, a common tunnel fluidly connected to the plurality of coke ovens and configured to receive the exhaust gases from each of the coke ovens, multiple standard heat recovery steam generators fluidly connected to the common tunnel where the ratio of coke ovens to standard heat recovery steam generators is at least 20:1, and a redundant heat recovery steam generator fluidly connected to the common tunnel where any one of the plurality of standard heat recovery steam generators and the redundant heat recovery steam generator is adapted to receive the exhaust gases from the plurality of ovens and extract heat from the exhaust gases and where the standard heat recovery steam generators and the redundant heat recovery steam generator are all connected in parallel with each other.
Abstract:
A coke plant includes multiple coke ovens where each coke oven is adapted to produce exhaust gases, a common tunnel fluidly connected to the plurality of coke ovens and configured to receive the exhaust gases from each of the coke ovens, multiple standard heat recovery steam generators fluidly connected to the common tunnel where the ratio of coke ovens to standard heat recovery steam generators is at least 20:1, and a redundant heat recovery steam generator fluidly connected to the common tunnel where any one of the plurality of standard heat recovery steam generators and the redundant heat recovery steam generator is adapted to receive the exhaust gases from the plurality of ovens and extract heat from the exhaust gases and where the standard heat recovery steam generators and the redundant heat recovery steam generator are all connected in parallel with each other.
Abstract:
Systems and methods for an overall oven health optimization system and method are disclosed. The oven health optimization system computes one or more metrics to measure/compare oven health performance data, computes oven life indicator values, generates one or more oven health performance plans, and so on, based on oven operation and/or inspection data parameters.
Abstract:
A coke oven includes an oven chamber, an uptake duct in fluid communication with the oven chamber, the uptake duct being configured to receive exhaust gases from the oven chamber, an uptake damper in fluid communication with the uptake duct, the uptake damper being positioned at any one of multiple positions, the uptake damper configured to control an oven draft, an actuator configured to alter the position of the uptake damper between the positions in response to a position instruction, a sensor configured to detect an operating condition of the coke oven, wherein the sensor includes one of a draft sensor, a temperature sensor configured to detect an uptake duct temperature or a sole flue temperature, and an oxygen sensor, and a controller being configured to provide the position instruction to the actuator in response to the operating condition detected by the sensor.
Abstract:
A coke plant includes multiple coke ovens where each coke oven is adapted to produce exhaust gases, a common tunnel fluidly connected to the plurality of coke ovens and configured to receive the exhaust gases from each of the coke ovens, multiple standard heat recovery steam generators fluidly connected to the common tunnel where the ratio of coke ovens to standard heat recovery steam generators is at least 20:1, and a redundant heat recovery steam generator fluidly connected to the common tunnel where any one of the plurality of standard heat recovery steam generators and the redundant heat recovery steam generator is adapted to receive the exhaust gases from the plurality of ovens and extract heat from the exhaust gases and where the standard heat recovery steam generators and the redundant heat recovery steam generator are all connected in parallel with each other.
Abstract:
A system and method for repairing a coke oven having an oven chamber formed from ceramic bricks. A representative system includes a insulated enclosure insertable into the oven chamber and includes removable insulated panels that define an interior area for workers to work in. The insulated enclosure is movable between an expanded configuration and a compact configuration and moving the enclosure to the expanded configuration will decrease the distance between the insulated enclosure and the walls of the oven chamber. Removing the panels exposes the ceramic bricks and allows workers within the interior area to access and the bricks and repair the oven chamber while the oven chamber is still hot. A loading apparatus lifts and inserts the insulated enclosure into the oven chamber. The insulated enclosure can be coupled to additional insulated enclosures to form an elongated interior area.
Abstract:
A method of testing the coking qualities of sample quantities of coal in a test container and the structure of the test container are disclosed. A test container which is ideally reusable is adapted to receive one or more samples of coal to be tested and then the test container is inserted into a coking oven along with additional, conventional coal during a conventional coking operation. Following the completion or substantial completion of the coking operation, the test container is recovered and from the conventional converted coke and the sample(s) of coke are removed from the container for testing and evaluation. The container is recharged with one or more additional samples of coke and reused in another conventional coking operation.
Abstract:
The present technology is generally directed to systems and methods for removing mercury from emissions. More specifically, some embodiments are directed to systems and methods for removing mercury from exhaust gas in a flue gas desulfurization system. In one embodiment, a method of removing mercury from exhaust gas in a flue gas desulfurization system includes inletting the gas into a housing and conditioning an additive. In some embodiments, conditioning the additive comprises hydrating powder-activated carbon. The method further includes introducing the conditioned additive into the housing and capturing mercury from the gas.
Abstract:
A duct intersection comprising a first duct portion and a second duct portion extending laterally from a side of the first duct portion. At least one flow modifier is mounted inside one of the first and second duct portions. The flow modifier is a contoured duct liner and/or the flow modifier includes at least one turning vane. The duct intersection may also include a transition portion extending between the first and second duct portions, wherein the transition portion has a length extending along a side of the first duct portion and a depth extending away from the side of the first duct portion, wherein the length is greater than a diameter of the second duct portion.
Abstract:
A method and apparatus for quenching metallurgical coke made in a coking oven. The method includes pushing a unitary slab of incandescent coke onto a substantially planar receiving surface of an enclosed quenching car so that substantially all of the coke from the coking oven is pushed as a unitary slab onto the receiving surface of the quenching car. The slab of incandescent coke is quenched in an enclosed environment within the quenching car with a plurality of water quench nozzles while submerging at least a portion of the slab of incandescent coke by raising a water level in the quenching car. Subsequent to quenching the coke, the planar receiving surface is tilted to an angle sufficient to slide the quenched coke off of the planar receiving surface and onto a product collection conveyer and sufficient to drain water from the quenched coke.