Abstract:
The invention relates to an improved method for fabricating the amplification gap of an avalanche particle detector in which two parallel electrodes are spaced apart by dielectric spacer elements. A foil including a bulk layer made of dielectric material sandwiched by two mutually parallel metallic electrodes is provided, and holes are formed in one of the metallic layers by means of photolithography. The amplification gap is then formed in the bulk layer by means of carefully controlled etching of the bulk material through the holes formed in one of the metallic layers. The invention not only provides a simplified fabrication process, but also results in a detector with enhanced spatial and energy resolution.
Abstract:
A proportional-type detector for the detection of low levels of radioactivity, such as alpha and beta particles generated by radioactive materials. In the preferred embodiment, this detector has a pancake-shaped cavity with a disk-shaped base and a cylindrical wall, with at least one anode member traversing the cavity. This anode member is maintained at an elevated potential so as to multiply and collect electrons formed within a counting gas within the cavity as a result of interaction between the radioactivity and a counter gas cavity. A perforated grid member, in one embodiment being a spiral coil, is substantially concentric with the anode member to provided a uniform electric field around the anode member. In the preferred embodiment, spacing between turns of the spiral grid is equal to or less than twice the radial distance between the anode member and the inside diameter of the grid. While an opening into the cavity can be covered with a window that is transparent to the radioactivity (the alpha and beta particles) for the retention of the counting gas, improved operation is obtained without a window for most applications.
Abstract:
Proportional counters for the detection and measurement of radioactive surface contaminations are provided with at least two flat window faces enclosing an angle and being formed by a thin foil spread or stretched by a framework including thin rods arranged along the inner edges of contacting window faces, to which rods the foil may be adhered. A perforated lattice or grid cage serves in particular to protect the thin window against any contact, the cage provides for a spacing of about double rod thickness between the framework and the controlled surface. Preferred is a polygonal and in particular hexagonal lattice whose grid wires or strips do not lie in the main scanning direction. Particularly convenient for checking pipelines are, for example, cylindrical measuring probes comprising window foils extending over and perhaps adhered to a circularly arranged frame of thin rods.
Abstract:
In a method of sensing the position of a neutral particle, the particle is received in one of two spaced parallel cathode arrays, each of which comprises a plurality of metal strips arranged adjacent and edge to edge, the strips in one array being orthogonal to the strips of the other array, and the metal of which the strips are formed being such that a neutral particle is converted to a fast electron which escapes from the cathode. Between the two cathode arrays is an anode array consisting of parallel wires held at a known electrical potential and surrounded by a gas. The fast electron is converted to an avalanche of electrons and positive ions; the presence of the ions induces an electrical charge in at least one strip of each cathode array; and the presence of the charges is sensed to determine an orthogonal position.
Abstract:
A compact single- or multi-channel radiation detector capable of sending forth a large and stable output signal by being operated in a proportional region which comprises a single or a plurality of electrode assemblies each prepared by inserting between a pair of mutually facing parallel high voltage electrodes an electric charge-collecting electrode having a plurality of metal wires spatially arranged in a plane parallel with said paired high voltage electrodes, and wherein the single or plural electrode assemblies are received in a case provided with a radiation inlet section and filled with a gaseous element mainly consisting of a rare gas such as argon or xenon.
Abstract:
A location- or positionally-sensitive proportional counter tube of high resolution having a trough-shaped cathode in a counting chamber. A resiliently elastic wire forming the anode extends longitudinally through the counting chamber. Suitable fastening arrangements engage the ends of the wire so as to mount the wire equidistantly from the side walls of the cathode trough and in electrical communication with the input resistor of a preamplifier. The counting chamber is an openable high-pressure chamber with inlet and outlet apertures for a pressurized counter tube gas.
Abstract:
A detector for ionizing radiation comprising a generally cylindrical enclosure which contains an ionizable gas, a central wire which with a peripheral wall constitute the electrodes of the device, and a window to permit entry of ionizing radiation. With appropriate potentials applied to the central wire and peripheral wall, ionizing radiation produces electrons which are attracted to the central wire and positive ions which are attracted to the peripheral wall in proportion to the intensity of the radiation. One or more auxiliary electrodes are provided which extend parallel to and between the central electrode and the peripheral wall. An appropriate potential is applied to this auxiliary electrode to neutralize the positive ions.
Abstract:
A proportional chamber having a plurality of output conductors carrying signals indicative of the location of an event detected within the chamber and using delay lines capacitatively coupled to said conductors for receiving signals through an intermediate portion of the side wall winding of the delay line. Delay times are measured to give a readout of the position and existence of the event.
Abstract:
Method and apparatus for detecting, distinguishing and indicating low-level activity of radioactive gases, such as tritium and/or krypton-85, in a selected gas, even in the presence of electronegative gases. The apparatus consists of a detection chamber of a type which is energy selective through inclusion of plural ionization collector circuits providing two separate detector outputs. The two detector outputs are applied then to parallel signal processing channels which serve to separate detected energy through pulse amplitude discrimination and/or coincidence selection to determine absolute quantities of radioactive events for selected contaminants in the gas sample.
Abstract:
The apparatus comprises a proportional counter with a long tubular nose-piece having an end window. The anode is a short wire parallel to the window and mounted on a support so that the support together with the anode is easily removable and replaceable. The support may be axially movable within the long tubular nose-piece, whereby sensitive tuning to specific characteristic X-rays is possible.